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CHAPTER 1

In the current thesis, I set out to investigate the central question: How are memories dynamically 

represented in our brains? The introduction begins with an overview of what is known about the 

neural correlates of human episodic memories, such as the involved brain networks and mental 

operations. Then I will elaborate on two types of dynamic processes that we investigated in this 

thesis and will highlight the questions that motivated the experiments presented in Chapters 

2-5. The critical methodological approaches that we used to answer these questions will be 

presented separately in Box 1-4. At the end of the introduction, I will give a summary and an 

outline of this thesis.

1.1. General Introduction

Historically, people hold the idea that memories are static entities. After a specific experience, 

some aspects of the brain endure an off-line, permanent, physical change (Schacter, 2012; 

Semon, 1923). This kind of memory representation in brains was described using the term 

“engram” or “memory trace.” The idea is that these representations can be used as the foundations 

of memory retrieval (Josselyn et al., 2015; Tonegawa et al., 2015). Recent breakthroughs in 

neuroscience (e.g., optogenetics (Deisseroth, 2011; Fenno et al., 2011)) largely enhanced our 

understanding of “engrams” as the basic physical unit of memory (Josselyn & Tonegawa, 2020).

However, the investigations of engrams in rodents, although fascinating, ignored one of the 

critical features of episodic memory: its dynamic nature. Specifically, most engrams studies 

assumed that (1) each episodic event is stored in one specific engram for later retrieval. This 

one-to-one mapping between memory and engram allows memory processing (e.g., encoding 

and retrieval) of one particular event to avoid affecting another event. (2) physical changes 

(e.g., synaptic plasticity) during memory formation and consolidation determine whether 

specific memories can be retrieved later and how strong they are. Here, we challenged these 

assumptions and investigated two corresponding principles of episodic memories dynamics: 

(1) process dynamics (Figure 1.1A): we asked whether mnemonic processing can be viewed 

as processing units that are close in time and how interactions between these units are relevant 

for memory performance (Chapters 2 and 3). (2) strength dynamics (Figure 1.1B): we probed 

whether the strength of each memory trace can be modified dynamically and if their perceived 

emotional intensity changes accordingly (Chapters 3 and 4).
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Figure 1.1 Schematic display of two types of memory dynamics. (A) Process dynamics: we argue that 
there are processing units within the temporal sequence of mnemonic processing. A unit can be a memory 
operation (e.g., encoding or retrieval), which is linked to a particular neural state and can interact with each 
other, leading to different behavioral consequences. (B) Strength dynamics: we propose that for each 
memory trace, its memory strength can still be modified after formation, and its emotional intensity can be 
adjusted during this dynamic process. 

1.2 Episodic memory network in the human brain revealed by neuroimaging

In this thesis, we mainly used functional neuroimaging in humans to study the dynamics of 

episodic memory. Therefore, it is critical to first gain a big picture of the brain areas involved 

in episodic memory. Since the earliest days of functional neuroimaging investigation of human 

memory, the central scientific question is: how the brain builds memories (i.e., encoding), and 

later accesses these memories (i.e., retrieval). For example, if it is possible to predict whether a 

given experience would be remembered or forgotten based on neuroimaging measures during 

encoding (i.e., subsequent memory effect (Brewer et al., 1998; Wagner et al., 1998))? Can we 

detect the differences between successful and unsuccessful retrieval at the neural level (i.e., 

retrieval success effect (Buckner et al., 1998))? The answers to these questions depend on the 

type of the stimulus (e.g., visual or auditory) of the initial study (Gottlieb et al., 2010), and how the 

memory is tested (e.g., recognition or recall test) (Frithsen & Miller, 2014; Kim, 2013; McDermott 

et al., 2009; Otten, 2007; Yonelinas et al., 2005). In this section, we will only discuss the network 

of brain regions that show both encoding and retrieval-related activation and are consistently 

involved in different task designs and stimuli.

In prominent theories (Gilmore et al., 2015; Rugg & Vilberg, 2013; Wagner et al., 2005), human 

episodic memory network included three major sub-systems (Figure 1.2): (1) medial temporal 

lobe (MTL) system (e.g., hippocampus, parahippocampal cortex, and entorhinal cortex); 

(2) prefrontal system (e.g., inferior frontal gyrus (IFG) and medial prefrontal cortex; and (3) 

parietal system (e.g., inferior parietal lobule (IPL), precuneus, and angular gyrus (AG)). These 

regions were thought to work together as the memory circuit, but this hypothesis has not been 
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investigated comprehensively until recently. Combining lesion data, resting-state fMRI data from 

healthy participants and patients with Alzheimer’s disease, and information on the locations of 

brain stimulation sites reported to enhance memory, one study provided a circuit perspective 

into the human episodic network. Ferguson and co-workers suggested that the junction of the 

presubiculum and retrosplenial cortex acts as a hub of the human memory system to link three 

sub-systems together (Ferguson et al., 2019).

Figure 1.2. Episodic memory network in the human brain. The map was generated by the Neurosynth 
(neurosynth.org) based on 124 human fMRI studies. Keywords “encoding and/or retrieval” were used to 
search for relevant studies. The network mainly includes the medial temporal lobe, prefrontal, and parietal 
system.

1.3 Pattern reinstatement supports memory retrieval.

We already summarized where in the brain, the memory dynamics could happen, and now 

we focused on how these areas may support memory processing. One crucial neuro-cognitive 

process performed by the episodic memory network is pattern reinstatement (or pattern 

reactivation)(Figure 1.3)(Kent & Lamberts, 2008; Xue, 2018). Endel Tulving proposed memory 

retrieval as “mental time travel”: during memory recall of a specific event, one is “transported” back 

to the situation in which that event took place (Tulving, 1984). Indeed, substantial neuroscientific 

evidence suggests that retrieving memories relies on the brain’s ability to reactivate neural 

activity patterns that were present when the memory was initially experienced (Janice Chen et al., 

2017; Kosslyn et al., 1997; S.-H. Lee et al., 2019; O’Craven & Kanwisher, 2000; Polyn et al., 2005; 

Wheeler et al., 2000; Maria Wimber et al., 2015) (Figure 1.3A). In humans, pattern reinstatement 
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can be captured by high-resolution fMRI and Multi-Voxel Pattern Analysis (MVPA) (Box 1). Due 

to the spatial limitation of fMRI, the reinstatement of activity patterns can only be observed 

across voxels, which are not biologically-valid measurement units. Recent evidence from human 

single-neuron recording demonstrated a similar process in terms of temporal reinstatement, 

at least in the medial temporal lobe (Vaz et al., 2020). In rodents, memory-related individual 

neurons can be experimentally tagged, imaged, manipulated, and even ablated (Han et al., 

2007, 2009; X. Liu et al., 2012; Ramirez et al., 2013, 2015; Vetere et al., 2019) (Figure 1.3B). 

These memory-related neurons are not located within one brain region but distributed across 

multiple brain regions (Roy et al., 2019). They are also functionally connected and activated 

simultaneously by the same experience, which is consistent with the human data showing that 

pattern reinstatement happens in multiple regions of the memory network (Janice Chen et al., 

2017; Xue, 2018).

                  

Figure 1.3 Pattern reinstatement supports memory retrieval. (A) Pattern reinstatement in humans. During 
the experience, brain regions such as the hippocampus may use a specific activity pattern to represent an 
individual memory. The same pattern will re-emerge in the same brain region during successful retrieval. 
The same pattern will not present during unsuccessful retrieval. (B) Pattern reinstatement in rodents. 
Memory-related neurons can be labeled during a specific experience (e.g., fear). Manipulation methods 
such as optogenetics can reactivate these neurons, leading to the retrieval of the experience or suppress 
these neurons, disrupting the retrieval process. 
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Box 1 Multivoxel Pattern Analysis (MVPA) of fMRI data in memory research 

The early univariate analysis of fMRI data focused on the relationship between Blood-Oxygen-

Level-Dependent (BOLD) signals within specific regions and mnemonic processing. This 

approach largely neglected the distributed nature of information representation over voxels 

within regions and even across different regions (i.e., functional brain networks). As opposed 

to the univariate analysis, Multivoxel Pattern Analysis (MVPA) considers finer-grained spatial 

patterns over voxels and tries to extract the information they encode jointly via machine-learning 

approaches (J. D. Cohen, Daw, Engelhardt, Hasson, Li, Niv, Norman, Pillow, Ramadge, Turk-

Browne, & others, 2017). 

The most important function of MVPA methods in memory research is that they provide a neural-

based index, tracking memory-related pattern reinstatement. For example, MVPA can capture 

the cue-induced awake retrieval (Janice Chen et al., 2017; S.-H. Lee et al., 2019), targeted 

memory reactivation during sleep (Shanahan et al., 2018), post-encoding memory consolidation 

(Gerlicher et al., 2018; M. J. Gruber et al., 2016), and memory replay (Schuck & Niv, 2019). 

There are two most common forms of MVPA: classifier-based MVPA and similarity-based MVPA. 

Classifier-based MVPA is a machine learning-based approach (Figure 1.4A). Brain activation 

patterns and memory content (e.g., pictures of humans, animals, or houses…) are used to train 

classifiers and then applied on activation patterns related to new input. The trained classifier 

can be used to decode the mental memory trace for each given trial. For example, during the 

successful retrieval of specific visual images, content-specific classifiers can accurately predict 

the categories of retrieved images (Kerrén et al., 2018; Polyn et al., 2005). If the decoding can 

be performed at an accuracy higher than the chance level, then it is the neural evidence for 

pattern reinstatement. The second major type of MVPA (i.e., similarity-based MVPA) focuses on 

the similarity measure of two or more activation patterns (Figure 1.4B). Brain activation patterns 

during perception or encoding of certain memory content are compared with the patterns during 

memory retrieval of that particular memory. There are different types of similarity measures that 

can be used in memory research. High perception-retrieval similarity or encoding-retrieval 

similarity (Xue, 2018) is regarded as the neural evidence for pattern reinstatement. 
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Figure 1.4 Applications of two types of MVPA in memory research. (A) Classifier-based MVPA. To detect 
pattern reinstatement, we can train multivariate classifiers on the activity patterns during the experience 
phase (e.g., perception or encoding) and test classifiers on activity patterns during memory retrieval. After 
seeing testing patterns, classifiers can then generate different outputs (e.g., category, decision distance, and 
probability). In the final evaluation phase, we can link these outputs with memory performance or subjective 
confidence. (B) Similarity-based MVPA. During the experience phase, we can estimate the activity pattern for 
each memory. During the retrieval, we extract the activity pattern when participants are instructed to recall. 
High pattern similarity between experience and retrieval is the neural evidence of pattern reinstatement and 
could suggest which memory the participants are recalling.

1.4 Modulations of memory traces between experience and retrieval
 
We have discussed where and how the brain represents information and accesses them 

when required. However, after initial formation and before the final memory retrieval, two types 

of dynamical changes can occur. First, neural traces of an episodic event change over time 

spontaneously via consolidation (Frankland & Bontempi, 2005; Takashima et al., 2006) and 

reconsolidation after reactivation (Nader et al., 2000; Schiller et al., 2010; Schwabe et al., 2014). 

Second, external factors can induce changes to the overall brain state or specific memory traces. 

For example, the administration of stress hormones (McGaugh & Roozendaal, 2002) or caffeine 

(Borota et al., 2014) can enhance memory performance in general. Behavioral tagging can 

improve performance for memories within the same conceptual space by changing its valence 

(Dunsmoor et al., 2015; Patil et al., 2017). Specific memory traces can be modulated as well. 

Methods such as targeted memory reactivation (Hu et al., 2020; Oudiette & Paller, 2013) and 
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retrieval practice (Karpicke & Blunt, 2011; Roediger III & Butler, 2011) can be used to enhance 

memories and approaches, for instance, memory control (Michael C Anderson & Green, 2001; 

Michael C Anderson & Hanslmayr, 2014) and memory updating/competition (Jacques et al., 

2013; Kuhl et al., 2010; Maria Wimber et al., 2015) can, in contrast, weaken them.

Both types of changes are likely to interact with each other and are often considered together 

(Figure 1.5) (Phelps & Hofmann, 2019). On one hand, during consolidation and reconsolidation 

memory traces are vulnerable to external modulations, and on the other hand, external factors 

can reactivate initially consolidated memory traces, triggering the reconsolidation (i.e., another 

vulnerable time window). 

Figure 1.5 Vulnerable time window for memory modulations. Adapted from Phelps & Hofmann, 2019. 
The first time window when memories are vulnerable to external modulations is the consolidation after 
initial formation (RED). Memory consolidation is a long process which can take from hours to days or even 
months, but most related studies try to modulate memories before the overnight consolidation. Following 
reactivation (i.e., retrieval), memories could become vulnerable again, creating the second time window for 
modulation (ORANGE). Reactivated, vulnerable memories will be consolidated again, and this process is 
called reconsolidation. 

1.5 Memory control

Among the different memory modulation approaches mentioned, memory control is a particular 

focus of this thesis because less is known about it compared to other memory operations. Memory 

control is when people can avoid unwanted memories via the inhibitory control mediated by the 

top-down regulation executed by the lateral prefrontal cortex on the hippocampus (Michael C 

Anderson & Hanslmayr, 2014). Since this process happens during memory retrieval, it is also 

called retrieval suppression. A typical way of studying memory control is the Think/No-Think 
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paradigm (Details see Chapters 2 and 3). The typical finding using the Think/No-Think paradigm 

was impaired memory for items that were suppressed relative to unmanipulated baseline items. 

This difference is referred to as the suppression-induced forgetting effect and was observed 

across different types of memories (Michael C Anderson & Huddleston, 2012; Benoit et al., 

2016; Bergström et al., 2013; Brendan E Depue et al., 2007; Gagnepain et al., 2014; Noreen & 

MacLeod, 2013).

Furthermore, expanding knowledge of memory control may have clinical relevance for affective 

disorders. Patients with affective disorders typically show deficits in the control of retrieving 

negative or traumatic memories in daily life (e.g., ruminations and flashbacks) (Bovy et al., 2019; 

Dillon & Pizzagalli, 2018; Kensinger & Ford, 2020). The Think/No-Think paradigm was used as 

a method to model this deficit in the laboratory setting (e.g., depression patients (Sacchet et 

al., 2017; Yang et al., 2020) and Post-traumatic stress disorder (PTSD) patients (Catarino et 

al., 2015). Importantly, the Think/No-Think paradigm based on trauma-unrelated materials was 

shown to predict resilience in the aftermath of a traumatic event (Mary et al., 2020), demonstrating 

its potential clinical value to identify high-risk individuals for developing related disorders.  

1.6 Process dynamics in episodic memories

Our life experiences are usually perceived as continuous. However, one can identify separate 

“processes” within this continuous stream of experiences as basic processing units. Considering 

whether these units provide the computational underpinnings of the same or different mnemonic 

operations, they can interact with each other in two different ways, leading to distinct process 

dynamics. (1) If all units support the same mnemonic operations (e.g., encoding), it is optimal 

for the brain to separate them to prevent overlapping representations (i.e., segmentation) and at 

the same time, to establish, a link between them to form a coherent memory (i.e., integration). 

(2) If the units support different mnemonic operations, the brain has to switch dynamically within 

a given time window from one to another task demand when required (i.e., task switching) 

(Meiran, 2010; Monsell, 2003). Two process dynamics mentioned above may share similar 

neural underpinnings. 

Segmentation and integration

Process dynamics, such as segmentation and integration, were usually ignored in previous 

neuroimaging investigations of memory encoding because to-be-remembered stimuli were 

presented as discrete trials (Kim, 2011). This design was a practical choice in the early days of 

functional neuroimaging because it enhances the statistical power to identify the neural effect 

of interest by averaging neural activity across trials. However, given the improved neuroimaging 
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data acquisition and analytical tools, now it is possible to use naturalistic stimuli (Box 2)in the 

functional neuroimaging studies to probe process dynamics. For example, during the encoding 

of continuous experience, temporal information within the ongoing neural activity and the 

stimulus can be used to gain novel insights into the relationship between event processing and 

memory formation (Baldassano et al., 2017; Chien & Honey, 2020).

Using the naturalistic stimuli, we can study, at least, two fundamental process dynamics during 

continuous perception and memory formation: event segmentation and event integration 

(Benjamin J Griffiths & Fuentemilla, 2020; Williams et al., 2019; Zacks, 2020). How the human 

brain segments ongoing experience is not only critical for memory formation but also a range of 

other cognitive functions (e.g., language (Ding et al., 2016; Teng et al., 2020)). Here, we firstly 

focused on the event segmentation during episodic memory processing. Using MVPA (Box1), 

two recent studies demonstrated correlates of event segmentation in the neocortical regions, 

with distinct activity patterns representing different events within the continuous experience 

(Janice Chen et al., 2017). Interestingly, activity pattern-mediated event segmentation showed a 

different time scale along with a nested ‘hierarchical memory system’ (Baldassano et al., 2017). 

A recent study suggests that the same set of brain regions also encodes context information in 

a hierarchical manner (Chien & Honey, 2020).

Compared to event segmentation, the neural mechanism of event integration while engaging in a 

continuous experience is less studied. This process is particularly critical and unique to everyday 

episodic memory formation since separate event representations need to be integrated into a 

coherent narrative. The trial-based AB-AC paradigm (Backus et al., 2016; Zeithamova et al., 

2012) is widely used to study memory integration and highlights the role of hippocampal-medial 

prefrontal interaction during memory integration (Preston & Eichenbaum, 2013). However, 

this trial-based paradigm can only reveal information integration of two or three items that are 

separate from each other temporally. Therefore, this method cannot reveal how events that are 

close in their temporal sequence interact with each other. 

Taken together, neural correlates of event segmentation and integration are less understood in 

the context of episodic memory formation. This brings us to the first central question of this thesis 

(Question 1): How do we transform continuous experience into discrete memories? In Chapter 

2, we described the answer to the question by discussing if we can reveal two complementary 

event processes (i.e., segmentation and integration) by probing the process dynamics of the 

ongoing neural activity, and by investigating how do they contribute to memory formation.
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Box 2 Naturalistic stimuli to study human cognition 

The classical trial-based paradigm is used widely in cognitive neuroimaging experiments. 

Recently,  naturalistic stimuli, including but not limited to movies (Baldassano et al., 2017; 

Janice Chen et al., 2017), music (Ganesh et al., 2019), and poetry (Teng et al., 2020) are 

increasingly popular among neuroimaging experimenters. To better make use of these data, 

several old analytic approaches have been applied, and new approaches have been developed 

accordingly. For example, inter-subject correlation (ISC) analysis can be used to measure 

shared information representation across brains (Janice Chen et al., 2017; Hasson et al., 2004). 

Independent component analysis-based network analysis is applied to model brain-state 

shift induced by external, naturalistic stimuli (Hermans et al., 2011). Voxel-wise encoding 

models provide a sensitive method for generating a semantic atlas of the cerebral cortex (Huth 

et al., 2016). Hidden Markov Model (HMM) is used to detect the latent, separable states that 

are hidden within the brain response patterns measured during continuous cognitive processing 

(Baldassano et al., 2017).

Compared to the trial-based paradigm, which provides precise experimental control to 

isolate different modulating factors and the possibility to average neural activity across trials, 

the naturalistic stimuli can largely enhance the ecological validity of the study design and 

related conclusions (Huk et al., 2018; Sonkusare et al., 2019). The issue of ecological validity in 

memory research is particularly critical since the trial-based paradigm cannot fully capture the 

characteristics of real-life memories. For example, contents are usually presented isolatedly in 

the trial-based paradigm, while in reality, we need to store the continuous, crowded stream of 

information into long-term memory. Together with machine learning approaches (e.g., computer 

vision, natural language processing), neuroimaging studies using naturalistic stimulus are 

starting to reveal neuro-computational principles of real-life memories (Baldassano et al., 2017; 

Janice Chen et al., 2017; Chien & Honey, 2020).

Task-switching

Task-switching is another form of process dynamics. The task demands within certain time 

windows can be viewed as different “processing units,” which are the building blocks of a 

temporal sequence of task switching. Task-switching is usually studied when participants are 

required to switch between simple tasks in different cognitive domains, such as switching 

between size comparisons and object recognition. However, what if these “units” are opposite 

memory-related mental operations?

A recent study demonstrated the interactions between two memory operations: after participants 
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performed a memory control trial, the following memory encoding is more likely to fail, suggesting 

the creation of an amnesic window. Neuroimaging results revealed that memory control had 

a lasting effect on reducing hippocampal activity, and this ‘virtual lesion’ was not recovered 

when hippocampal activity was required to support memory encoding (Hulbert et al., 2016). 

This study suggests that within the temporal sequence, the preceding unit has a lasting effect 

on the execution of the current unit. This switch cost could be even larger in cases where two 

different tasks involve overlapping brain areas, but different neural processes are needed (e.g., 

increasing hippocampal activity for encoding, but decreased hippocampal activity for memory 

control).

Because memory encoding and retrieval share overlapping neural resources, we reason that the 

dynamic interaction between memory control and retrieval might lead to, sometimes, postponed 

transitions between neural states. This effect may not be limited to the delayed recovery of 

hippocampal activity (Hulbert et al., 2016), but also at a large-scale network level. This brings 

us to the second central question of this thesis (Question 2): How does the brain flexibly switch 

between memory retrieval and memory control? Here, in Chapter 3, we investigated the task 

switching-induced temporal dynamics between retrieval and control. Time-resolved classifiers 

were used to track the fast transition of neural states between the memory system and the control 

system. Methods in this study are built on the recent developments enabling the characterization 

of dynamic neural reconfigurations (Box 3).

Box 3 Characterize dynamic neural reconfiguration

Classical analysis methods in fMRI have largely ignored the richness of temporal information 

within the data. Admittedly, the temporal resolution of the fMRI signal, even with the most 

advanced scanners and sequences (e.g., with the repetition time of 0.4-0.8 seconds), is 

incomparable to Electroencephalography (EEG) or Magnetoencephalography (MEG). With the 

new analytic methods and specific experimental designs, the temporal dynamics during both 

resting-state and task-based fMRI can open unique windows into the general organization of 

the human brain and its adaptation during cognitive tasks.

Resting-state fMRI has greatly advanced our understanding of the fundamental features of the 

brain, from the interaction between two brain regions to large-scale brain networks. However, the 

key method of these investigations (i.e., functional connectivity) assumes that the statistical 

relationship between signals from two brain regions is constant throughout the entire resting-

state period lasting several minutes to even hours (Buckner et al., 2013; Van Den Heuvel & 

Pol, 2010). Recent studies have begun to challenge this assumption: dynamic functional 
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connectivity studies revealed the wealth of information contained along the temporal time-line 

of spontaneous fMRI signals (Hutchison et al., 2013) and their behavioral relevance (Liégeois et 

al., 2019).

Task-based fMRI also witnesses a similar development. Most early studies only generated one 

statistical map by averaging data from different trials, blocks, or runs. This approach ignored 

the neural adaption from early to the later stages of the same task, or the adaption between 

different tasks. For example, when participants are required to control over emotional memories, 

the prefrontal cortex demonstrated the time-specific two-phase control: at the initial attempts of 

memory control, inferior frontal gyrus is more involved, while medial frontal gyrus plays a more 

critical role at the later stage (Brendan E Depue et al., 2007). In a block-design fMRI study with 

reasoning, perception, and memory tasks, the coupling between the control network and the 

default network is stronger in the memory task, but not in the other two tasks (Westphal et al., 2017).  

1.7 Strength dynamics in episodic memories

Memory strength is not a consistent concept and can be defined in different ways (e.g., 

availability, subjective confidence, vividness, or durability). Here, we used “strength” in a relatively 

abstract sense, by defining the higher strength leading to better retrieval performance, including 

all characteristics mentioned before. We propose that the strength of a memory trace, although 

static at a particular time point, can change towards two directions (i.e., become stronger or 

weaker) across time. We defined these changes as strength dynamics.

Retrieval practice and memory control

At the beginning of the introduction (See Section 1.3), we discussed several potential approaches 

that can induce strength dynamics by modulating the memory trace between memory formation 

and memory retrieval. Among them, retrieval practice and memory control are easy to study 

because no additional experimental setup is needed, and participants can actively follow 

instructions to modulate the strength of specific memories. 

Although human neuroimaging studies revealed retrieval-related and control-related univariate 

activity changes in frontal, parietal, and temporal areas (Eriksson et al., 2011; Gagnepain et al., 

2014; Kuhl et al., 2010; Nelson, Arnold, Gilmore, & McDermott, 2013; G. van den Broek et al., 2016; 

G. S. E. van den Broek et al., 2013; Maria Wimber et al., 2008, 2011; Wing et al., 2013; Wirebring et 

al., 2015), the precise neural mechanisms underlying these strength dynamics are still unknown. 

One possibility could be that these strength dynamics are achieved by modulating pattern 

reinstatements (See section 1.4). More specifically, during retrieval practice, memory-specific 
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neural patterns are reinstated repeatedly, leading to the strengthening of item-specific memory 

representation. By contrast, during memory control, pattern reinstatements are prevented, and 

thus, when memory cues are presented, the link between the cue and corresponding neural 

pattern is weaker. This idea has not been tested thoroughly yet during both modulation and later 

retrieval within one experiment.

Furthermore, even though strength dynamics can be induced by memory modulation immediately 

after formation (i.e., the first vulnerable time window in Figure 1.4), whether and how memory 

modulations can also induce strength dynamics after an initial period of consolidation is currently 

not well understood. Because newly acquired memories are usually more labile compared to 

consolidated ones (Frankland & Bontempi, 2005) and mnemonic representations shift from 

the hippocampus to distributed neocortical regions following overnight sleep (Takashima et 

al., 2006, 2009), the same types of modulations may not produce strength dynamics, or the 

behavioral effects may be associated with different underlying neural changes.

This leads us to answer the third central question of this thesis (Question 3): How does the 

memory modulation re-organize memory traces and change their memory strength after 

overnight consolidation? In Chapter 4, we investigated whether memory traces, after their initial 

consolidation, are still flexible enough to change with repeated retrieval practice and retrieval 

suppression. How is the pattern reinstatement modified by retrieval practice and suppression? 

Is the modulation of newly acquired memories and initially consolidated memories associated 

with similar neural changes?

Dual modulation of memory and emotion

The strength dynamics of memories induced by memory modulations may be associated with 

changes in other characteristics of episodic memory (e.g., perceived emotional intensity). 

Although not strictly linear, the relationship between memory strength and emotional intensity 

may form a two-dimensional coordinate system. That is to say, if the strength of one memory is 

moved by the memory control along one axis, its emotional intensity, in another axis, may also 

change. This phenomenon of dual modulation was observed in memory control studies using 

the Think/No-think paradigm (De Vito & Fenske, 2017; Gagnepain et al., 2017). More specifically, 

compared to unmanipulated control memories, memory traces that underwent suppression do 

not only demonstrated lower availability (i.e., suppression-induced forgetting effect), but also 

show reduced unconscious influence (Gagnepain et al., 2014), and emotional impact (De 

Vito & Fenske, 2017; Gagnepain et al., 2017). Engen and Anderson recently reviewed related 

behavioral and neuroimaging studies in this field and proposed a conceptual link between 

emotion regulation and memory control (Engen & Anderson, 2018).
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To reduce the emotional impact of a perceived stimulus is the central goal of emotion regulation 

(Gross, 2013). This ability can be critical in patients with affective disorders, especially for those 

who have memory-related symptoms, such as ruminations and flashbacks. However, at the same 

time, impaired emotion regulation is one of the key cognitive symptoms in affective disorders 

(Kring & Sloan, 2009), making the emotional impact of their negative memories more impactful. 

Thus, exposure therapy, which is thought to be based on fear memory extinction, is widely used 

to target traumatic memories in the clinical setting (Rothbaum & Schwartz, 2002). However, its 

long-term effect can be suboptimal due to the spontaneous recovery of memory traces after the 

therapy. Based on the research progress described here, memory control training may be used 

as an alternative method to weaken unwanted negative memories, in both memory strength and 

emotional intensity.

However, it is unknown how strength dynamics of memory relate to changes in emotional intensity. 

This brings us to the fourth central question of this thesis (Question 4): Why are changes in memory 

strength also accompanied by alterations of emotional intensity? In Chapter 5, we combined task 

fMRI data, neuroimaging meta-analytic approaches, and postmortem gene-expression data 

(Box 4) to explore the common neural and transcriptional correlates underlying memory control 

and emotion regulation. Understanding their common neurobiological correlates may pave the 

way for further developments to enhance memory control and emotion regulation ability by brain 

stimulation or pharmacological interventions. 

Box 4 Gene expression-Neuroimaging association analysis 

Due to the technical advances in molecular biology, a human brain atlas that maps expression 

levels of thousands of genes across the entire brain is openly available to neuroscientists around 

the world (Hawrylycz, Lein, Guillozet-Bongaarts, Shen, Ng, et al., 2012; Shen et al., 2012). This 

new type of data offers new opportunities for understanding the relationship between genes 

and brain structure and function beyond the conventional candidate gene studies (Hariri et al., 

2002) or genome-wide association studies (Elliott et al., 2018). Understanding gene-function 

relationships sheds new light on not only the genetic correlates of fundamental brain architecture 

in the normal population but also the molecular underpinnings of particular brain disorders 

(Fornito et al., 2019).

The new set of approaches for linking gene expression to neural phenotypes measured by 

MRI can be divided into two major categories: connectivity-based association analysis and 

activation-based association analysis. The pioneering study by Richiardi and colleagues 

provided evidence that two brain regions that are functionally connected (i.e., belong to the 
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same functional network) tend to have more similar gene expression profiles (Richiardi et al., 

2015). These results suggest a close relationship between the underlying molecular mechanisms 

and the functional role of a given brain region. Richiardi and colleagues used the connectivity-

based analysis, which calculates the transcriptional similarity of gene expression profiles 

between brain regions (i.e., the region-region transcriptional correlation across genes) (Figure 

1.6A). Another pioneering work by Wang and colleagues showed that fractional amplitude of 

low-frequency fluctuations (fALFF), a region-specific resting-state fMRI activity measure, is 

selectively correlated with the spatial expression patterns of 38 genes among all genes (Wang et 

al., 2015). In this study, the activation-based association analysis was used, which focuses on 

the spatial pattern similarity between neuroimaging and transcriptional measures (i.e., activation-

expression relation across tissues) (Figure 1.6B).

Figure 1.6 Two types of methods to link brain imaging with gene expression. (A) Connectivity-based 
association analysis. Genome-wide expression values can be extracted from two regions in the brain and 
correlated with each other, yielding a regional correlation value. Regions that belong to the same functional 
network or connected by the anatomical connection tend to demonstrate more similar transcriptional 
profiles compared to two unrelated regions. (B) Activation-based association analysis. A brain-wide spatial 
pattern from neuroimaging (e.g., structure or activity map) can be correlated with the spatial patterns of 
transcriptional regulation of different genes. Genes whose spatial patterns are similar to the neuroimaging 
patterns can be identified in a data-driven way.

These new approaches together revealed an association between connectome and transcriptome 

(Fornito et al., 2019), molecular correlates of neural changes in brain disorders (Grothe et al., 

2018; McColgan et al., 2018; Morgan et al., 2019; Romero-Garcia et al., 2019; Romme et al., 

2017), and transcriptional correlates of cognitive functions including memory (Berto et al., 2018), 

spatial navigation (X. Kong et al., 2017), and language (X.-Z. Kong et al., 2020).
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Thesis outline

In this thesis, I describe research that aims to gain more insight into the dynamic nature of human 

memory. Specifically, the overarching question for the chapters in this thesis was: “How does 

our brain support both temporal and strength dynamics of memory?”. The next four chapters 

(Chapters 2-5) presented four experimental investigations of testable research questions:

1.  How do we transform continuous experience into discrete memories? 

2.  How does the brain flexibly switch between memory retrieval and memory control?

3.  How does memory modulation re-organize memory traces and change their memory  

 strength after overnight consolidation? 

4.  Why are changes in memory strength also accompanied by alterations of emotional  

 intensity?

To answer the above questions, I used novel cognitive tasks and fMRI in healthy human subjects 

and combined methods from imaging genetics, neuroinformatics, and machine learning. Here, 

I will give a brief outline of the experimental and analytic approaches.

In Chapter 2, we were interested in the mechanism by which the hippocampus segments and 

integrates discrete events within continuous experiences and how these two processes relate to 

the subsequent memory retrieval. Human participants watched a movie while being scanned and 

afterward, they were instructed to recall the story of the movie freely. We quantified neural signals 

of event segmentation and event integration using two multi-voxel pattern similarity metrics in the 

hippocampus and searched for a similar process across the brain. We further associated these 

metrics with subsequent memory performance to demonstrate their role in memory formation. 

In Chapter 3, we investigated the transition of neural states underlying the task-switching 

between memory retrieval and its control. We hypothesized that the switch-induced delay in 

transiting neural states causes behavioral switching-costs. Healthy participants underwent fMRI 

during a Think/No-Think task, which was specially designed to probe task switching between 

two memory-related behaviors. This design allowed us not only to induce memory-related 

switching costs but also to capture the dynamic transitions between neural states. Combining a 

time-resolved multivariate decoding analysis and a trial-by-trial task performance measure, we 

can observe the updating of task-related neural states and its behavioral relevance.

Next, in Chapter 4, we set out to investigate the neural dynamics of mnemonic representations 

during and after post-consolidation modulation. We asked how initially consolidated memories 

are dynamically modulated by retrieval and suppression 24 hours after learning. We hypothesized 

that repeated retrieval would promote episode-unique mnemonic representations in the 
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neocortex, while memory control would have the opposite effect. Both the univariate activation 

analysis and multivariate pattern analysis were used to quantify the neural reactivation of 

memory traces during modulation and subsequent retrieval. We further investigated the dynamic 

changes of neural measures from these two analyses across repeated modulation attempts and 

the complementary relationship between the two neural measures. 

Lastly, in Chapter 5, we explored the common role of inhibitory control in both memory control 

and emotion regulation. To reveal the neural and transcriptional commonalities underlying 

memory control and emotion regulation, we first performed a meta-analysis of fMRI studies 

across four inhibition-related task paradigms (i.e., memory control, emotion regulation, go/

no-go, and strop-signal). Then, we linked these task-induced brain activity patterns to gene 

expression patterns in the Allen Human Brain Atlas (AHBA). The identified inhibition-related 

genes were further linked to biological processes and human diseases via a Gene Ontology 

enrichment analysis.
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Chapter 2
Hippocampal-medial prefrontal event 

segmentation and integration contribute to 
episodic memory formation

This chapter is based on:

Liu, W., Shi, Y., Cousins, J. N., Kohn, N., & Fernandez, G. (2020). Hippocampal-medial 

prefrontal event segmentation and integration contribute to episodic memory formation. 

bioRxiv. (This preprint is under revision in a scientific journal) 
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Abstract

How do we encode our continuous life experiences for later retrieval? Theories of event 

segmentation and integration suggest that the hippocampus binds separately represented 

events into an ordered narrative. Using an open-access functional Magnetic Resonance Imaging 

(fMRI) movie watching-recall dataset, we quantified neural similarities between separate events 

during movie watching and related them to subsequent retrieval of events as well as retrieval 

of sequential order. We demonstrate that distinct activation patterns of the hippocampus and 

medial prefrontal cortex form event memories. By contrast, similar within-region connectivity 

patterns between events facilitate memory formation and are critical for the retention of events 

in the correct sequential order. These reported subsequent memory effects only existed when 

neural similarities were calculated based on actual event boundaries, but not shuffled event 

boundaries. We propose that distinct activation patterns represent neural segmentation of events 

while similar connectivity patterns act as the ‘chunking code’ for integration across events. Our 

results provide novel evidence for the role of hippocampal-medial prefrontal event segmentation 

and integration in episodic memory formation of real-life experience.

Keywords: subsequent memory effect; hippocampus; medial prefrontal cortex; event 

segmentation; event integration
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Introduction

How we form memories of our life experiences is a fundamental scientific question with broad 

implications. In the past two decades, human neuroimaging and electrophysiology studies using 

the subsequent memory effect paradigm have implicated a distinct set of brain regions involved 

in successful memory formation (Brewer et al., 1998; Fernández et al., 1999; Kim, 2011; Wagner 

et al., 1998). In these subsequent memory studies, increased neural activity of the hippocampus, 

parahippocampal gyrus, and the prefrontal cortex during memory encoding is associated 

with successful subsequent retrieval. However, real-world memories are formed based on a 

continuous stream of information rather than the sequentially presented, isolated items used 

in most subsequent memory studies (Kim, 2011). Potentially, continuous sensory experience is 

segmented into distinct events (i.e., event segmentation) (Baldassano et al., 2017; Williams et 

al., 2019; Zacks, 2020) that are then bound together into a coherent narrative, preserving their 

sequential relationships (i.e., event integration) (Benjamin J Griffiths & Fuentemilla, 2020). To 

examine episodic memory formation of real-life-like experiences in humans, we analyzed brain 

activity using functional Magnetic Resonance Imaging (fMRI) while participants were watching 

a movie. Based on subsequent memory recall, we aimed at identifying brain regions and neural 

representational processes underlying event segmentation and integration during episodic 

memory formation. 

Thanks to recent advances in the statistical analysis of ongoing neural activity (J. D. Cohen, 

Daw, Engelhardt, Hasson, Li, Niv, Norman, Pillow, Ramadge, Turk-Browne, & Willke, 2017; 

Hermans et al., 2011; Nastase et al., 2019; Xue, 2018), naturalistic stimuli (e.g., movie, spoken 

narratives, music) have been increasingly used in neuroscience (Hasson et al., 2004; Hermans 

et al., 2011; Huk et al., 2018; Sonkusare et al., 2019). This is especially valuable for memory 

research because naturalistic stimuli can greatly enhance the ecological validity of experimental 

studies (Baldassano et al., 2017; Janice Chen et al., 2017; Hasson et al., 2008; Montchal et 

al., 2019). Hasson and colleagues first investigated memory formation with cinematographic 

stimuli and demonstrated that brain activity was more correlated among participants for later 

remembered than forgotten events (Hasson et al., 2008). While that study uncovered regions 

that encode continuous experiences, the nature of representations in those regions remained 

unclear, particularly with regard to how episodes are segmented into separate events and then 

integrated into a coherent sequence.  

Event segmentation theory suggests that continuous experiences need to be segmented into 

discrete event representations, and thereafter they can be better understood and encoded 

(Zacks, 2020; Zacks et al., 2001, 2007). Two recent studies provided novel perspectives into 

segmentation theory. Using Multi-Voxel Pattern Analysis (MVPA) and a movie watching-recall 
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dataset, Chen and colleagues showed similar activation patterns of the same events across 

individuals and event-specific reinstatements of activation patterns between encoding and 

retrieval (Janice Chen et al., 2017). Following this, Baldassano and colleagues demonstrated 

a nested processing hierarchy of events (‘hierarchical memory system’, (Hasson et al., 2015)) 

from coarse segmentation in early sensory regions to fine-grained segmentation in regions of the 

higher-order default-mode network (e.g., medial prefrontal cortex (mPFC) and posterior medial 

cortex (PMC)). Importantly, boundaries of long events at the top of the hierarchy matched with 

event boundaries annotated by human observers and were coupled to increased hippocampal 

activity (Baldassano et al., 2017). These results demonstrated that human brains spontaneously 

used different activation patterns to represent events during continuous movie watching, and 

how these activation patterns reactivated during recall. Also, it may suggest that regions such as 

mPFC, PMC, and hippocampus encode events at the same level that we consciously perceive 

boundaries between events. However, it remains unclear how exactly this event segmentation at 

the neural level relates to subsequent memory recall.

Event segmentation alone is not sufficient for episodic memory formation of continuous real-life 

experiences. Temporal context theory suggests that it is essential to integrate segmented events 

into a coherent narrative via time, meaning, or other abstract features (Howard et al., 2005; 

Howard & Eichenbaum, 2013). Therefore, a non-exhaustive list of questions are: (1) what are 

the neural underpinnings of event integration during continuous memory formation, (2) does 

integration occur in the same brain regions as segmentation, and (3) how does integration 

relate to subsequent memory recall. A promising approach to answer these questions is to 

examine the local connectivity pattern (also called multi-voxel correlation structure), which may 

represent a brain signal that integrates events (Tambini & Davachi, 2019). This method was 

derived from rodent electrophysiology (Kudrimoti et al., 1999; Lansink et al., 2008; Qin et al., 

1997) and has been used in human fMRI studies (Hermans et al., 2017; Tambini & Davachi, 

2013) to quantify distributed memory representations in neuronal assemblies. Recently, Tambini 

and Davachi (Tambini & Davachi, 2019) proposed that activation patterns are the representations 

of specific perceptual inputs (e.g., stimuli), while local connectivity patterns reflect particular 

encoding contexts or states. However, the different mnemonic functions of activity patterns 

and connectivity patterns have yet to be compared empirically within a single study. If local 

connectivity patterns represent encoding context, they may facilitate integration across events. 

Examination of connectivity patterns alongside activation patterns would help to characterize how 

the brain simultaneously performs event segmentation and integration.

Recently, a hippocampal neural code (chunking code) that simultaneously tracked subdivisions 

of a continuous experience (i.e., events) and their sequential relationship was described in 

rodents’ CA1 region (Sun et al., 2020). This ‘chunking code’ could be a fundamental neural 
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code by which episodic experience is integrated, but has yet to be revealed in humans. 

Hippocampal activity was found to increase at the boundaries between two events during the 

continuous experience (Baldassano et al., 2017; Ben-Yakov et al., 2013; Ben-Yakov & Dudai, 

2011; Ben-Yakov & Henson, 2018; DuBrow & Davachi, 2013; Williams et al., 2019), but what 

these hippocampal signals represent in terms of event segmentation and integration is not clear. 

Theoretical models proposed that increased hippocampal signal may reflect a rapid shift in 

mental representations (e.g., temporal and/or contextual information of an event) (DuBrow et al., 

2017; DuBrow & Davachi, 2016; Ranganath & Ritchey, 2012). Therefore, it can be regarded as the 

neural signature of event segmentation. Alternatively, this increase may link to the integration of 

episodic memories across event boundaries, as suggested by scalp electrocorticography (EEG) 

studies (Silva et al., 2019; Sols et al., 2017) and the event conjunction framework (Benjamin J 

Griffiths & Fuentemilla, 2020). However, fMRI evidence for the role of hippocampal signals in 

integration across events is still limited.

The current study aimed to reveal the neural underpinnings of the two processes in question – 

event segmentation and event integration - during memory formation of naturalistic experiences. 

To that end, we used an existing dataset (Baldassano et al., 2017; Janice Chen et al., 2017) where 

participants watched a movie while being scanned (Figure 2.1A) and afterward were instructed 

to freely recall the story of the movie (Figure 2.1B). This design allowed us to associate different 

neural measures during episodic encoding with subsequent memory retrieval (Figure 2.1C-D). 

We extracted voxel-wise Blood Oxygenation Level Dependent (BOLD) time courses during movie 

watching (encoding) from six predefined regions-of-interest (ROI) in the ‘hierarchical memory 

system’ (Hasson et al., 2015) including early auditory and visual areas, posterior medial cortex, 

medial prefrontal cortex, hippocampus, and posterior parahippocampal gyrus (Figure 2.2A; 

Figure S2.1). To probe the role of a broader set of regions in event segmentation and integration, 

we repeated all analyses in each parcel of a neocortical parcellation (Schaefer et al., 2018) 

(Figure 2.2B). We first examined the relationship between ROI-based activity time courses and 

subsequent memory recall and replicated the classical subsequent memory effects (i.e., greater 

activation for remembered compared to forgotten events) in regions including the hippocampus 

as well as the posterior parahippocampal gyrus (Figure S2.2-2.3, details in Supplementary 

Materials). To dissociate the two event processes, we used voxel-wise activity (Figure 2.2C) 

from each ROI to quantify the similarity between neural representations of events by two different 

multivariate methods (i.e., activation and connectivity patterns) (Figure 2.2D-E). We reasoned 

that if the neural representation (activation or connectivity pattern) shows a large transition (i.e., 

negative neural similarity value) between two adjacent events, and if this dissimilarity associates 

with better subsequent memory for events, then this representation might be involved in event 

segmentation (Figure 2.2E). By contrast, if the neural representation remains stable (i.e., higher 

similarity) across two or more neighboring events, and this stability relates to event memory as 
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well as retention of the correct order for those events (order memory), then this representation 

may underlie event integration (Figure 2.2F).

Figure 2.1. Experimental procedure and behavioural performance. (A) Each participant watched a 
50-min audiovisual movie, BBC’s Sherlock (season 1, episode 1), while brain activity was recorded with fMRI. 
The movie was divided into 50 events based on major narrative shifts. Blurred images are shown here due to 
copyright reasons. However, the movie was shown in high resolution during the experiment. (B) Immediately 
after movie-watching, participants verbally recalled the movie content in as much detail as possible without 
any visual or auditory cues. Speech was recorded using a microphone and then transcribed. Critically, 
speech was also segmented into events and matched with the events segmented from the movie. All events 
mentioned in the speech were labeled as remembered while missing events were labeled as forgotten. In 
addition, among those remembered events, the ones that were recalled in the correct sequential order were 
labeled as in-order events (e.g., event 6 was recalled after event 5). Out-of-order events were those that were 
recalled in an incorrect sequential order (e.g., event 4 was recalled after event 6). We labeled the first recalled 
event and all forgotten events as not available because no sequential information can be accessed. (C) 
Illustration of all remembered and forgotten events during movie-watching in all participants. (D) Illustration 
of all in-order and out-of-order events during movie watching in all participants. Each row of the heatmap is 
a different event, and each column represents a participant. 
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Figure 2.2. Neural similarities between separate events and their link with subsequent memory recall. 
(A) Six predefined regions-of-interest (ROIs): early auditory (green) and visual area (red), posterior medial 
cortex (brown), medial prefrontal cortex (pink), hippocampus (blue), and posterior parahippocampal gyrus 
(orange). See also Supplementary Figure 1. (B) Neocortical parcellation (1000 parcels) used in searchlight 
analysis. (C) For each region (ROI or parcel), voxel-wise signal during movie watching was extracted and 
then segmented into 50 events based on the event annotations. (D) We first generated event-specific 
activation patterns by averaging over all time points in that event. Then activation pattern similarity was 
calculated by Pearson’s correlation between activation patterns of two sequential events. If a region 
encodes two events separately, we expect two distinct neural representations and therefore a negative 
correlation (i.e., lower than zero). (E) Event-specific within-region connectivity patterns were represented 
by voxel-by-voxel pairwise correlation matrices. Connectivity pattern similarity across event boundaries was 
also calculated using Pearson’s r between two sequential events. Stable neural representations across 
two events should yield a positive correlation (i.e., higher than zero) in the corresponding region. (F) fMRI 
evidence for event segmentation. For a certain multivariate neural measure, if it can be found that two distinct 
neural representations are used to encode the adjacent events while the neural patterns for remembered 
(‘R’) events are more dissimilar compared to forgotten (‘F’) events, this measure is likely to be associated 
with event segmentation. (G) fMRI evidence for event integration. If the multivariate neural measure remains 
stable across the boundary of two neighboring events and remembered (‘R’) events have higher neural 
similarity compared to forgotten (‘F’) events, this measure may relate to event integration.
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Methods

Participants and procedure

Participants

Twenty-two healthy young adults (10 females, age range 18-26, mean age 20.8 years) 

participated in the experiment. All participants were native English speakers and naïve to the 

BBC crime drama Sherlock. Data were discarded from participants with excessive motion (> 1 

voxel; n = 2), low recall duration (< 10 min; n = 2), or sleeping during the experiment (n = 1). 

This leaves 17 participants in total for our analyses. Due to a technical problem, one participant 

(s5) is missing data for the last 75 s (part of event 49 and all of event 50) and the affected two 

events were excluded in the analyses.

Procedure

All our analyses are based on the Sherlock Movie Dataset (Baldassano et al., 2017; Janice Chen 

et al., 2017); see Data availability below) acquired and pre-processed at Princeton Neuroscience 

Institute. No similar analysis or results (excluding behavioural results of recall accuracy) have 

been reported in previous studies using this dataset. 

Participants were informed that they would watch a movie and would later be required to recall 

its content. They were then presented with a 48-min segment of the first episode of the Sherlock 

series (encoding phase), split into two parts of approximately equal length (23 min and 25 min) 

and presented in two consecutive blocks. A 30 s introductory cartoon clip was prepended before 

each block. Immediately after the movie presentation, participants were instructed to verbally 

describe the movie in as much detail as they could and for as long as they wished (recall phase). 

They were asked to recall the episode in the correct sequential order but were permitted to return 

to earlier points in the narrative if they remembered further content. Audio was simultaneously 

recorded by a customized MR-compatible recording system throughout the recall phase. 

Behavioural data analysis

Event annotations of the movie and verbal speech recording

The movie was segmented into 48 events by an independent observer, following major shifts 

in the narrative (e.g., director’s cuts). Including the two introductory cartoon clips, 50 scenes 

were analyzed in total. The timestamps for both the onset and offset of identified scenes were 

recorded and aligned across all participants. Both the onset and offset are referred to as the 

boundaries of the respective event. This is a widely used method for event segmentation and 

has been validated by a data-driven approach (Baldassano et al., 2017). The length of the 

scenes ranges from 11 to 180s (Mean ± SD: 57.5 ± 41.7 s). Each subject’s verbal speech was 

transcribed, segmented, and matched to the events that were recalled from the movie. 
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Event and order memory

For each participant, we first asked whether events were successfully recalled or not, as in the 

classical subsequent memory paradigm (Brewer et al., 1998; Fernández et al., 1999; Wagner et 

al., 1998). An event was labeled as ‘remembered’ if any part of the event was described during 

the recall. ‘Forgotten’ events are the ones that were not mentioned throughout the recall phase.

 

Secondly, out-of-order events were identified as a measure of sequential memory. Among all 

remembered events, an event was labeled as out-of-order if it was not described immediately 

after its preceding event in the original movie. For example, if event 3 is described immediately 

after event 1 without mentioning event 2, then event 3 is an out-of-order event. By contrast, 

if a participant described event 4, 5, 6 sequentially during the recall phase, since event 5, 6 

correctly followed their preceding event, event 5, 6 were counted as in-order events. The first 

event verbally described in the recall phase was always labeled as ‘not available’ in the order 

memory analysis since it is not preceded by any event. It was possible that a single scene was 

mentioned multiple times (in different parts) during the recall, in which case the position of its first 

recall was used in the analyses. 

fMRI data analysis

fMRI data acquisition and pre-processing

fMRI data were acquired using a T2*-weighted EPI sequence on a 3T Siemens Skyra scanner 

(20-channel head coil; TR 1,500 ms; TE 28 ms; flip angle 64, spatial resolution 3*3*4 mm3). Only 

data from the encoding phase were analyzed and reported in the current study. 

A standard pre-processing pipeline was followed using FSL (Jenkinson et al., 2012), which 

includes slice timing correction, motion correction, linear detrending, high-pass filtering (140 s 

cutoff), co-registration and affine transformation into 3 mm MNI standard space (Janice Chen et 

al., 2017). The time series were shifted 3 TRs (4.5 s) to account for the Haemodynamic response 

function (HRF). Data were z-scored across time at every voxel and a 6 mm smoothing kernel 

was applied.

All subsequent analyses were performed on the pre-processed voxel-wise BOLD signal, in 

units of functional volume (TR = 1.5 s). Custom MatLab (R2018, The Mathworks, Natick, MA) 

and Python (version 3.6) scripts were used for both Region of Interest and parcellation-based 

searchlight analysis.

Region of interest (ROI) selection 

The six ROIs used in this study were independently defined by Chen and colleagues, in 

correspondence to the timescale hierarchy of the event segmentation model (Baldassano et al., 



40 | 

CHAPTER 2

2017; Hasson et al., 2015). Early visual and early auditory cortex were functionally defined based 

on inter-subject correlation during an audio-visual movie and an audio narrative, respectively 

(Janice Chen et al., 2016; Simony et al., 2016). ROIs for medial prefrontal cortex (mPFC) and 

posterior medial cortex (PMC) were taken from the functional atlas derived from resting-state 

default mode network (https://findlab.stanford.edu/functional_ROIs.html) from FIND lab at 

Stanford University (Shirer et al., 2012). The hippocampus and posterior parahippocampal 

gyrus were anatomically defined from the probabilistic Harvard-Oxford Subcortical Structural 

Atlas (Desikan et al., 2006). Chen and colleagues manually adjust the threshold of around 50% 

to ensure better anatomical coverage during the visual check.

Whole-brain parcellation 

Alongside the ROI-based analysis, we performed a parcel-based searchlight analysis on the 

basis of 1000 functionally parcellated cerebral regions (https://github.com/ThomasYeoLab/CBIG/

tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal). The parcellation 

was based on a gradient-weighted Markov Random Field (gwMRF) model, which integrated 

local gradient and global similarity approaches (Schaefer et al., 2018). Using both task and 

resting-state fMRI acquired from 1489 participants, parcels with functional and connectional 

homogeneity within the cerebral cortex were generated (hippocampus and subcortical regions 

were not included). In this fashion, each of these biologically meaningful and non-overlapping 

parcels can be treated in the same way as an independent region similar to an ROI in the 

following analyses.

fMRI-based neural responses to event boundaries

Univariate response

BOLD signals were first averaged for each TR across all voxels in an ROI. Then the time series 

were z-scored and segmented based on the event annotations mentioned above. The shortest 

event was 7 volumes (10.5 s), therefore we averaged 6 volumes at the beginning and end of all 

events in order to assess the change in activity between them.

Activation patterns

Voxel-wise BOLD time series from separate events were first extracted based on the onset and 

offset timestamps derived from the movie. Multivariate patterns of brain activation were generated 

for each event by averaging across all volumes within this event. To assess the similarity between 

two neighboring events, the activation pattern for each event of interest was correlated with 

its following event. The resulting Pearson’s correlation coefficient depicted the extent to which 

similar representational activity patterns were elicited by neighboring scenes. Lower similarity 

between two events represented a greater change in neural patterns across the event boundary.
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Connectivity patterns

Intra-regional connectivity pattern analyses were conducted based on a method originally used 

in rodent electrophysiology studies to quantify the reactivation of sparsely distributed neuron 

assemblies (Lansink et al., 2008; Qin et al., 1997), and recently used in human fMRI (Hermans 

et al., 2017; Tambini & Davachi, 2013, 2019). For each event within each brain region, Pearson’s 

correlations were performed on the extracted m*n (volumes*voxels) BOLD-fMRI time series, 

between each of the n voxel time series. This yielded an n-by-n pairwise correlation matrix 

(containing p values indicating the significance of the Pearson’s correlations), representing the 

within-region connectivity structure for each scene. For two neighboring events, the Pearson’s 

correlation coefficient of their correlation matrices was calculated to quantify the similarity for 

connectivity patterns. Lower similarity between two connectivity patterns represented a greater 

change in the intra-region connectivity patterns across the event boundary.

Relationship between neural responses during encoding and subsequent memory 

Remembered and forgotten events comparisons

We first compared our neural pattern similarities (i.e., activation pattern similarity and connectivity 

pattern similarity) at the single-subject level explained above for each brain region (ROI or 

brain parcel). The similarity indices (Pearson’s r between two matrices) for both activation and 

connectivity patterns were averaged for the two types of event pairs (remembered and forgotten) 

for each participant. If the first event of the pair was retrieved during the recall phase, the event 

pair was labeled as remembered. Remembered and forgotten event pairs were then compared in 

two separate t-tests for activity and connectivity pattern transitions (indexed by pattern similarity).

We further examined the relationship between connectivity pattern transitions and order memory 

(i.e., temporal order of event recall). More specifically, connectivity patterns were averaged 

for another two types of event pairs (i.e., In-order or Out-of-order) for each participant. If the 

second event of the pair was recalled in an incorrect sequential order (e.g., event 4 was recalled 

immediately after event 6), the event pair was labeled as Out-of-order. Connectivity pattern 

transitions for In-order and Out-of-order event pairs were then compared with t-tests. 

Event-specific correlational analysis

Thus far we have examined the association between memory and neural pattern similarity 

in a within-participant fashion. We then examined whether the likelihood of an event being 

remembered correlated with neural responses across participants. The recall rate for an event 

was the proportion of participants that remembered it. At the same time, the pattern similarity of 

both activation and connectivity patterns was calculated and averaged across all participants, 

generating the neural transition indices across participants. Recall rates for all 50 events and their 

corresponding pattern transition measures were then correlated, providing a further indication of 

how subsequent memory related to pattern transitions across boundaries. 
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Relationship between hippocampal pattern similarity and event distance

The above analyses focused on neural pattern similarities between two neighboring events. 

Here, we examined the hippocampal pattern similarities between events with variable distances. 

Event distance was defined as the number of event boundaries between two events (the event 

distance between event 1 and event 3 is 2). For each event, we first calculated its activation and 

connectivity pattern. Then, we calculated the activation and connectivity pattern similarity between 

all possible combinations of event A-B pairs (‘Event A’ is the event which appeared earlier in the 

temporal sequence, and ‘Event B’ is the one presented later) within all 50 events. Finally, for 

each participant, and each event distance, two mean similarities for activation and connectivity 

pattern were calculated separately. Note that the number of available pairs decreases as the 

distance increases (e.g., events 1-50 are the only event pair with a distance of 49). To ensure a 

well-powered analysis for every event distance, we only compared event pairs with a distance 

less than or equal to 40, meaning at least 10 event pairs contributed to the event distance 

Supplementary Materials. 

First, one-sample t-tests were performed separately on each distance to test the difference 

between zero and the distance-specific activation and connectivity pattern similarities. All 

resulting p values were corrected for False Discovery Rate (FDR) based on the number of 

distances included (from dmin = 1 to dmax = 40). Next, we used linear regression to examine the 

relationship between pattern similarity and event distance. In addition, to investigate how the 

subsequent memory of the preceding event (event A) modulates the relationship between event 

distance and pattern similarity, we ran a two-way ANOVA (memory * event distance) using the 

memory performance (remembered or forgotten) of the preceding event and event distance 

(range from 1 to 40) as two independent variables.       

Statistical analysis

For hypothesis tests involved in the fMRI data analyses, the significance level was set to 

p  =  0.05 (two-tailed). Except for the permutation test for simulated event boundaries (see 

Supplementary Materials), p values were based on the parametric testing. To account for the 

multiple comparisons problem that comes with multiple ROIs or parcels, all reported p values in 

the main text were FDR-corrected (pFDR) (Genovese et al., 2002) unless otherwise stated (praw). 

Specifically, this means correction was made for six tests in ROI analyses, and 1000 tests for 

the whole-brain analyses. All significant p values were reported together with the effect sizes 

(Cohen’s d or partial ²). The custom modified version of DABEST (https://github.com/ACCLAB/

DABEST-python) was used to plot individual data points alongside bootstrapping-based 

resampled distributions of the mean difference between conditions (Ho et al., 2019).
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Data and code availability

ROI data are available at http://datasets.datalad.org/?dir = /workshops/mind-2017/sherlock. 

Whole-brain neuroimaging data are available at https://dataspace.princeton.edu/jspui/

handle/88435/dsp01nz8062179. Custom code used in this study will be publicly available via 

the Open Science Framework (OSF) (Link: https://osf.io/p68cv/?view_only=483703873dae4cfd-

8b36e9d6df6b8c92) upon publication. Further requests for scripts should be directed to the 

corresponding author.

Results

Subsequent memory performance measured by spoken recall 

The dataset (Baldassano et al., 2017; Janice Chen et al., 2017) is from an experiment in which 

17 healthy participants watched a 50-min audio-visual movie (BBC’s Sherlock) while undergoing 

an fMRI scan (Figure 2.2A). Immediately thereafter, participants were instructed to verbally recall 

the movie in as much detail as possible (Figure 2.2B). No visual or auditory cues were given 

during the retrieval session. 

Similar to the previous experiments probing the subsequent memory effect (Brewer et al., 1998; 

Fernández et al., 1999; Wagner et al., 1998), the central purpose of our analyses was to identify 

brain regions and their response patterns that predict subsequent recall. To quantitatively analyze 

memory retrieval performance, the movie was divided into 50 events based on major narrative 

shifts (e.g., director’s cuts). Each participant’s spoken recall was transcribed and segmented 

into events matching those from the movie (Figure 2.1B) (Details in Methods and Materials). 

The current analyses used the same event annotations for the movie and spoken recall as the 

original studies (Baldassano et al., 2017; Janice Chen et al., 2017).

We first calculated recall accuracies for each participant. On average, 68.7% (SD = 12%, range 

48% - 94%) of the 50 events (Mean = 34.4 events, SD = 6) were retrieved successfully (Figure 

2.2C). Among these remembered events, we further defined in-order and out-of-order events 

based on whether they were recalled in the correct sequential order. On average, 58.8% (SD = 

8%, range 40% - 71%) of the remembered events were in-order (Figure 2.2D). 

Distinct activation pattern-mediated event segmentation is associated with subsequent 

retrieval success

We quantified neural similarities of event-specific activation patterns before and after event 

boundaries (i.e., two neighboring events). Specifically, we generated a voxel-wise activation 

pattern per event by averaging over all time points in that event. This time-averaged activation 
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pattern of all voxels within an ROI for an event was compared to the pattern of its subsequent 

event using Pearson’s correlation. A negative Pearson’s r indicates two separateble activation 

patterns and thus distinct neural representations for two distinct events. We investigated whether 

activation pattern similarities relate to memory formation by contrasting the pattern similarities 

of remembered with forgotten events in six ROIs. That is, pattern similarity between two events 

was compared to subsequent memory for the first of those events. We found that subsequently 

remembered events were associated with lower activation pattern similarities than subsequently 

forgotten events in early auditory cortex (t = -3.56, pFDR = 0.007, Cohen’s d = 0.92, Figure 

2.3B), hippocampus (t = -3.62, pFDR = 0.007, Cohen’s d = 0.92, Figure 2.3E), mPFC (t = -2.79, 

pFDR = 0.01, Cohen’s d = 0.80, Figure 2.3C) and posterior parahippocampal gyrus (pPHG) 

(t = -2.85, pFDR = 0.01, Cohen’s d = 0.89, Figure 2.3F). This finding suggests that distinct 

activation patterns for two sequential events are beneficial for the memory of the first event in 

that sequence. Early visual areas (t = -1.13, pFDR = 0.27, Cohen’s d = 0.35, Figure 2.3A) and 

PMC (t = -1.91, pFDR = 0.08, Cohen’s d = 0.65, Figure 2.3D) did not show this marked effect. In 

addition to the comparison between remembered and forgotten events, we generated shuffled 

event boundaries as the baseline. Our main results only existed for the actual even boundaries, 

but not shuffled boundaries (See Supplementary Materials (Figure S2.4)).

So far, within-participant comparisons between remembered and forgotten events revealed that 

differences in activation pattern similarities of several ROIs are related to subsequent memory. 

Next, we examined whether a similar relationship is evident across participants. Specifically, we 

investigated the relationship between the event-specific recall rate (the percentage of participants 

that successfully recalled a particular event) and the averaged activation pattern similarity for the 

corresponding event (the first one in the sequence) across all participants. Consistent with our 

main analyses, this analysis revealed that the recall rate negatively correlated with activation 

pattern similarity in the hippocampus (r = -0.292, praw = 0.042) and pPHG (r = -0.344, praw 

= 0.015), suggesting that events with lower activation pattern similarity were more likely to be 

recalled (Figure S2.5). 
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Figure 2.3. Association between activation pattern similarities of six ROIs and subsequent memory 
recall. We compared activation pattern similarities of sequential event pairs based on subsequent memory 
performance of the first event (Remembered vs. Forgotten) across six ROIs. For panel A-F, activation pattern 
similarities for Remembered events are displayed on the left (green), while similarities for Forgotten events 
are displayed on the right (red). For each comparison, a separate axis displays the mean difference. The 
curve (gray) indicates the resampled distribution of the mean difference generated via bootstrapping. The 
solid vertical line attached to the curve represents the mean difference as a 95% bootstrap confidence 
interval. We found significantly lower activation pattern similarity for Remembered vs. Forgotten event pairs in 
the early auditory area (t = -3.56, pFDR = 0.007, Cohen’s d = 0.92; panel B), mPFC (t = -2.79, pFDR = 0.01, 
Cohen’s d = 0.80; panel C), hippocampus (t = -3.62, pFDR = 0.007, Cohen’s d = 0.92; panel E), and pPHG (t 
= -2.85, pFDR = 0.01, Cohen’s d = 0.89; panel F). No significant differences were found in early visual areas (t 
= -1.13, pFDR = 0.27, Cohen’s d = 0.35; panel A) and PMC (t = -1.91, pFDR = 0.08, Cohen’s d = 0.65; panel 
D). NS=Not significant; * pFDR<0.05; ** pFDR<0.01.
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Similar connectivity pattern-mediated event integration is correlated with subsequent 

retrieval success

Next, we investigated the association between connectivity patterns – a different multivariate 

method to characterize neural representations – and subsequent memory retrieval. Within-region 

multi-voxel connectivity patterns were calculated by a voxel-by-voxel pairwise correlation matrix 

resulting from the correlations between time courses of all voxels within a given region. This 

represents the relative correlation structure between all voxels in a certain region during event 

processing. We first calculated the event-specific within-region connectivity patterns for two 

sequential events, and then we quantified the similarity between connectivity patterns across 

event boundaries also using Pearson’s r. Contrasting similarities of connectivity patterns of 

subsequently remembered and forgotten events allowed us to examine how transitions in 

connectivity patterns contribute to memory formation. We found higher connectivity pattern 

similarity for subsequently remembered compared to forgotten events in the early auditory area 

(t = 2.9, pFDR = 0.02, Cohen’s d = 0.72, Figure 2.4B), visual areas (t = 3.34, pFDR = 0.01, 

Cohen’s d = 0.74, Figure 2.4A), hippocampus (t = 3.39, pFDR = 0.01, Cohen’s d = 0.73, Figure 

2.4E), and PMC (t = 2.79, pFDR = 0.02, Cohen’s d = 0.47, Figure 2.4D). The same contrast was 

not significant for mPFC (t = 1.22, pFDR = 0.23, Cohen’s d = 0.25, Figure 2.4C) and pPHG (t = 

1.36, pFDR = 0.22, Cohen’s d = 0.30, Figure 2.4F). A follow-up permutation test examining the 

specificity of subsequent memory effects to actual event boundaries (as opposed to randomly 

generated pseudo boundaries) can be found in the Supplementary Materials (Figure S2.6).

The event-specific correlational analysis demonstrated that the recall rate positively correlated 

with connectivity pattern similarity in the early auditory area (r = 0.327, praw = 0.022), visual areas 

(r = 0.35, praw = 0.014), hippocampus (r = 0.301, praw = 0.036), PMC (r = 0.341, praw = 0.017), 

and pPHG (r = 0.341, praw = 0.017) (Figure S2.7). These results suggest that events with higher 

connectivity pattern similarity in these ROIs were more likely to be recalled.
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Figure 2.4. Association between connectivity pattern similarities of six ROIs and subsequent memory 
recall. We compared connectivity pattern similarities of sequential event pairs  based on subsequent memory 
performance of the first event (Remembered vs. Forgotten) across six ROIs. For panel A-F, connectivity 
pattern similarities for Remembered events are displayed on the left (green), while similarities for Forgotten 
events are displayed on the right (red). For each comparison, a separate axis displays the mean difference. 
The curve (gray) indicates the resampled distribution of the mean difference generated via bootstrapping. 
The solid vertical line attached to the curve represents the mean difference as a 95% bootstrap confidence 
interval. We found significantly higher connectivity pattern similarity for Remembered (green) vs. Forgotten 
(red) event pairs in the early auditory area (t = 2.9, pFDR = 0.02, Cohen’s d = 0.72, panel B), visual areas (t 
= 3.34, pFDR = 0.01, Cohen’s d = 0.74, panel A), hippocampus (t = 3.39, pFDR = 0.01, Cohen’s d = 0.73, 
panel E), and PMC (t = 2.79, pFDR = 0.02, Cohen’s d = 0.47, panel D). No significant differences were found 
in mPFC (t = 1.22, pFDR = 0.23, Cohen’s d = 0.25, panel C) and  pPHG (t = 1.36, pFDR = 0.22, Cohen’s d = 
0.30, panel F). NS=Not significant; * pFDR<0.05.
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Similar connectivity pattern-mediated event integration preserves sequential order of 

events in later retrieval

So far we have shown the opposite association between our two multivariate neural pattern 

measures and subsequent memory performance: distinct activation patterns, but similar 

within-region connectivity patterns across events in the early auditory cortex and hippocampus 

predict retrieval success. This pattern of results suggests that the connectivity pattern may 

represent the ‘chunking code’ to integrate events into a continuous sequence. To directly test this 

‘chunking code’ hypothesis, we examined the relationship between connectivity pattern similarity 

and sequential order of subsequent recall. We reasoned that if the connectivity patterns remain 

stable across event boundaries, events should tend to be recalled in the correct sequential order. 

We compared the mean connectivity pattern similarities for in-order and out-of-order events. 

Controlling for multiple comparisons, we found that connectivity pattern similarity in early visual 

cortex to be larger for in-order compared to out-of-order events (t = 3.16, pFDR = 0.03, Cohen’s 

d = 0.47, Figure 2.5A). Similar trends that did not survive correction for multiple comparisons 

were detected in the hippocampus (t = -2.43, praw = 0.026, pFDR = 0.08, Cohen’s d = 0.53, 

Figure 2.5E), auditory area (t = -2.08, praw = 0.053, pFDR = 0.084, Cohen’s d = 0.46, Figure 

2.5B) and posterior parahippocampal gyrus (t = -2.05, praw = 0.056, pFDR = 0.084, Cohen’s d = 

0.36, Figure 2.5F). No such effect was observed in the mPFC (t = -1.35, pFDR = 0.19, Cohen’s d 

= 0.19, Figure 2.5C), and PMC (t = -2.05, pFDR = 0.12, Cohen’s d = 0.33, Figure 2.5D).
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Figure 2.5. Association between connectivity pattern similarities of six ROIs and sequential order 
of memory recall. We compared connectivity pattern similarities of sequential event pairs (In-order vs. 
Out-of-order) based on sequential memory performance of the first event across six ROIs. For panel A-F, 
connectivity pattern similarities for In-order events are displayed on the left (BLUE), while similarities for 
Out-of-order events are displayed on the right (BROWN). Early visual areas (t = 3.16, pFDR = 0.03, Cohen’s 
d = 0.47, panel A) demonstrated higher connectivity pattern similarity for the In-order events compared to 
Out-of-order events. A similar trend was also detected in the hippocampus (t = -2.43, praw = 0.026, Cohen’s 
d = 0.53, panel E), but it did not survive FDR correction (pFDR = 0.08). We also found modest, non-significant 
trends in the early auditory area (t = -2.08, praw = 0.053, pFDR = 0.084, Cohen’s d = 0.46, panel B) and 
posterior parahippocampal gyrus (t = -2.05, praw = 0.056, pFDR = 0.084, Cohen’s d = 0.36, panel F). No 
similar effects were detected in mPFC (t = -1.35, pFDR = 0.19, Cohen’s d = 0.19, panel C), and PMC (t = 
-2.05, pFDR = 0.12, Cohen’s d = 0.33, panel D). NS=Not significant; * pFDR<0.05; # praw<0.05.
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Hippocampal activation and connectivity patterns change differently with event distance 

Among our six ROIs, we found converging evidence for a dissociation of event segmentation and 

integration in the hippocampus: lower activation pattern similarity, but higher connectivity pattern 

similarity was beneficial for memory formation. Building on these findings, we hypothesized 

that hippocampal activation patterns of neighboring events should be less similar than events 

that occur far apart. By contrast, hippocampal connectivity patterns of close events should be 

more similar than events with a long interval in between. Thus, we calculated the activation and 

connectivity pattern similarity between all possible combinations of event pairs (‘Event A’ and 

‘Event B’) within all 50 events (Figure 2.6A and 2.6D). For all pairs of events with the same 

event distance (e.g., separated by four events), we calculated the mean similarity measure 

for activation pattern and connectivity pattern separately. This calculation was repeated for all 

possible event distances. To ensure reliable estimations of pattern similarities, we only present 

calculations can be found in Figure S2.8)

We analysed the hippocampal activation and connectivity patterns separately. First, our activation 

pattern analysis found that the shorter the event distance, the more distinct the hippocampal 

activation patterns (r = 0.21, praw = 1.8 × 10-8; Figure 2.6B and S2.9A). This positive correlation 

was largely driven by the negative similarity values between events that occurred close to each 

other: events separated by a distance of less than four were represented by two distinct (neural 

similarity significantly lower than 0) hippocampal activation patterns (d = 1, t = -5.52, pFDR = 

0.0006; d = 2, t = 3.86 × 10-11, pFDR = 1.5 × 10-9; d = 3, t = 6.75 × 10-6, pFDR = 0.0001; d = 4, t 

= -2.98, pFDR = 0.08). Events with a distance larger than or equal to four did not show markedly 

distinct activation patterns (neural similarity not significantly different from 0) (Figure 2.6B). 

Furthermore, we found that subsequent memory recall of Event A modulated the relationship 

between event distance (d = 1 - 4) and activation pattern similarity (ANOVA with event A × 

distance interaction: F (3,48) = 10.1, p < 0.001; Figure 2.6C). That is, hippocampal activation 

pattern similarities increased as the event distance changes from 1 to 4, but only if event A was 

later recalled (Fremembered (3,48) = 9.54, p < 0.001; Fforgotten (3,48) = 1.35, p = 0.268). 

Second, our connectivity pattern analysis found that the shorter the event distance, the more 

similar the hippocampal connectivity patterns (r = -0.439, praw = 1.8 × 10-33; Figure 2.6E and 

S2.9B). At the same time, across all event distances, the connectivity pattern similarities were 

consistently higher than zero (from d = 1, t = 31.86, pFDR = 2.29 × 10-14 to d = 40, t = 18.16, 

pFDR = 4.4× 10-12; pFDR < 0.05 for all d). Furthermore, we found a significant interaction between 

event A recall and distance (F (19, 304) = 2.37, p = 0.001), and a significant main effect of event 

A (F (1, 16) = 7.53, p = 0.014). That is, if event A was recalled later, its hippocampal connectivity 

pattern was more similar to any other event in the sequence, compared to when event A was 
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not successfully recalled (Figure 2.6F). This suggests that if connectivity patterns between pairs 

of events are more similar, for both short and long distances, then events are more likely to be 

successfully encoded.

Figure 2.6. Hippocampal pattern similarity changes with event distance. (A) Hippocampal activation 
patterns were generated for all 50 events. We calculated activation pattern similarities between sequential 
events (event distance = 1) and all possible combinations of non-sequential event pairs (event distance > 1). 
(B) Hippocampal activation patterns between pairs of events were significantly dissimilar for events separated 
by a distance of less than 4 (red shadow). (C) Memory performance modulated the distance-activation 
pattern similarity relationship. If the first event (Event A) of the pair was successfully encoded, activation 
pattern similarities of the event pair increased with event distance (green line). (D) Hippocampal connectivity 
patterns were generated for all possible combinations of event pairs. (E) Event pairs with shorter event 
distance had more similar hippocampus connectivity patterns. At the same time, similarities of hippocampus 
connectivity patterns are higher than 0 regardless of event distance. (F) Memory performance modulated 
distance-connectivity pattern similarity relationship. If the first event (Event A) of the event pair was successfully 
encoded, connectivity pattern similarities of the event pair are enhanced regardless of their event distance. 
For panel B-F, error bands (i.e., light shadow around the solid line) represent the 95% confidence interval of 
the mean.
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Subregions of the prefrontal cortex perform event segmentation and integration

Our ROI-level analyses found that (1) distinct hippocampal activation patterns were associated 

with better event memory; (2) similar hippocampal connectivity patterns were beneficial for 

event memory; (3) although not surviving multiple comparison correction, similar hippocampal 

connectivity patterns tended to preserve the sequential order of events (Figure 2.7A). To 

investigate whether these relationships are present in other brain regions beyond our six ROIs, 

we ran a parcel-based searchlight version of our pattern similarity analysis to identify overlapping 

event segmentation and integration computations across neocortical parcels. In sum, we 

investigated three potential relationships between neural pattern similarity and subsequent 

retrieval separately. First, we identified brain parcels whose lower activation pattern similarities 

across events were associated with retrieval success (Figure S2.10A). Next, we mapped the 

association between higher connectivity pattern similarities and retrieval success on each parcel 

(Figure S2.10B). Then, we identified the parcels, which demonstrated a positive association 

between connectivity pattern similarities and order memory (Figure S2.10C). 

To identify brain parcels that may support all three neural computations, similar to the 

hippocampus, we overlapped spatial patterns for these three effects (all pFDR < 0.05). This 

revealed a set of brain regions including relatively large clusters (at least 50 voxels) in the mPFC, 

right inferior frontal gyrus (IFG), anterior/middle cingulate cortex and supplementary motor area 

(SMA), left inferior temporal gyrus (ITG) and left insular (Figure 2.7B). These results suggest 

that this network of cortical regions may use the same neural processes to perform event 

segmentation and integration as the hippocampus during continuous memory encoding.
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Figure 2.7. Identifying overlapping event segmentation and integration computations across the 
neocortex. (A) We identified three relationships between neural pattern similarity and subsequent memory 
in the hippocampus. (B) Similar to the hippocampus, overlapping event segmentation and integration 
computations were found in a network of brain regions including the medial prefrontal cortex (mPFC), right 
inferior frontal gyrus (IFG), anterior/middle cingulate cortex and supplementary motor area (SMA), left inferior 
temporal gyrus (ITG), and left insular (pFDR < 0.05 across 1000 parcels, cluster size >= 50).
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Discussion

To successfully form memories of our life experiences, we need to segregate continuous 

experience into events (Baldassano et al., 2017; Williams et al., 2019), and integrate those events 

across their boundaries into a coherent narrative (Benjamin J Griffiths & Fuentemilla, 2020). 

Here we show that distinct hippocampal activation patterns, but similar hippocampal connectivity 

patterns across event boundaries, facilitate these two vital episodic memory functions. We 

propose that distinct activation patterns reflect event segmentation while similar connectivity 

patterns represent a ‘chunking code’ that integrates separately represented events into a 

narrative. Supporting this role of connectivity patterns for event integration, we found that similar 

hippocampal connectivity patterns were crucial for the correct sequential order of subsequent 

retrieval. Our whole-brain analysis demonstrates that similar neurocomputations were performed 

by a network of cortical regions, in particular for the mPFC. Overall, these results suggest that 

both hippocampal and medial prefrontal event segmentation and integration support memory 

formation of continuous experience. 

Using multivoxel pattern analysis, we found that distinct local activation patterns across 

event boundaries in the early auditory area, mPFC, posterior parahippocampal gyrus, and 

hippocampus, were associated with better subsequent memory, indexed by more negative 

similarities of activation patterns between two adjacent events. The ability to segment continuous 

experience has been linked to successful memory encoding in a behavioural experiment (Sargent 

et al., 2013) and compelling evidence suggested that the hippocampus is activated around 

event boundaries (Ben-Yakov et al., 2013; Ben-Yakov & Dudai, 2011; Ben-Yakov & Henson, 2018; 

DuBrow & Davachi, 2013; Williams et al., 2019). This hippocampal activity has been proposed to 

be associated with a hippocampal segmentation process, but how the hippocampus represents 

two separate events, and whether the corresponding neural representations are relevant for 

memory remained unclear. Our findings suggest that the hippocampus and other brain regions 

(e.g., mPFC) segment events by representing them with two distinct patterns of activity. This is 

consistent with the role of the hippocampus in pattern separation: when similar experiences need 

to be discriminated against and encoded, the underlying hippocampal neural representations 

tend to be dissimilar (Bakker et al., 2008; Yassa & Stark, 2011). This has typically been studied to 

show how the brain separates perceptually similar stimuli (i.e., images), but our findings indicate 

that a similar separation occurs at the level of events and this determines subsequent memory. 

The episodic memory system may use ‘orthogonalized’ neural representations to encode two 

events for the purpose of event segmentation. Further, we show these ‘orthogonalized’ neural 

representations are potentially event-distance dependent: the hippocampus only generates 

consecutive dissimilar patterns when events occur relatively close in time. Taken together, this 

suggests the existence of a brain network (mainly hippocampus and mPFC) for the continuous 
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segmentation of ongoing experience, and the degree of neural separation is relevant for memory 

formation.

Complementing this, we found that more similar within-region connectivity patterns of several 

regions across event boundaries, including again the early auditory area and hippocampus, were 

associated with the better subsequent recall. Compared to local activation patterns (J. D. Cohen, 

Daw, Engelhardt, Hasson, Li, Niv, Norman, Pillow, Ramadge, Turk-Browne, & Willke, 2017; Xue, 

2018), within-region connectivity patterns are a less used multivariate approach. Recently, Tambini 

and Davachi proposed that both activation and connectivity patterns could be used to capture 

neural states during memory encoding and reactivation, but connectivity patterns tend to encode 

contexts or states instead of particular perceptual inputs (Tambini & Davachi, 2019). Our results 

support this notion, whereby activation patterns were more event-specific, while connectivity 

patterns were more associated with the temporal context of events. Therefore, the connectivity 

pattern acts as the ‘chunking code’ to integrate segmented and separately represented events 

into a coherent narrative. Previous evidence from invasive recordings of hippocampal neurons 

in rats (Manns et al., 2007) and patients with pharmacologically intractable epilepsy (Paz et al., 

2010) suggested that the temporal context of events is hippocampally encoded. Specifically, Paz 

and colleagues found that neuronal activity in the hippocampus became more correlated across 

viewing repetitions of short movie clips, which suggests coding of the temporal context within 

events (Paz et al., 2010). Our connectivity pattern measure suggests that the hippocampus also 

codes temporal context across successive events, integrating them into a narrative.

In addition, we found that close event pairs tend to have more similar connectivity patterns, and 

that connectivity pattern similarities are lower for forgotten compared to remembered events. 

This holds for event pairs with both short and long distances, suggesting the relevance of similar 

connectivity patterns for memory formation across the entire narrative. Multi-voxel connectivity 

pattern analysis, as a less used multivariate neural measure, may be applied as an alternative 

approach to study how temporal sequences are neurally represented. Evidence suggests 

that neural activity in the hippocampal-entorhinal region, measured in both rats and humans, 

represents the temporal sequence of experience (Bellmund et al., 2019; Lositsky et al., 2016; 

MacDonald et al., 2011; Montchal et al., 2019; Pastalkova et al., 2008; Thavabalasingam et al., 

2019; Tsao et al., 2018). Adding to this evidence, our findings suggest that a stable connectivity 

pattern across events appears to be a marker of this temporal sequence coding. Future studies 

are needed to further investigate the precise mnemonic functions of different neural measures 

(e.g., activity pattern, within-region connectivity pattern, and system-level interaction between 

regions) during memory formation (Tambini & Davachi, 2019). 

Our ROI analysis highlights the two functions of the hippocampus in the separate representation 
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of segmented events and the binding function that linked events into a narrative, and parcel-based 

searchlight analysis identified the role of subregions of the prefrontal cortex (e.g., mPFC, IFG), 

insular, and inferior temporal gyrus in event segmentation and integration during memory 

formation. The role of the mPFC in event integration is particularly thought-provoking. The mPFC 

is generally implicated in encoding and retrieval of episodic memories (Kim, 2010; Rugg & 

Vilberg, 2013). Among its variety of functions in learning and memory (Fernández & Morris, 2018), 

the online integration of events we observed here is consistent with its function in the facilitation 

of associative inference (Preston & Eichenbaum, 2013; Schlichting et al., 2014; Schlichting 

& Preston, 2015; Spalding et al., 2018; Zeithamova et al., 2012), accumulation of knowledge 

(Berkers et al., 2018; Kumaran et al., 2009), and integration of new and prior knowledge (van 

Kesteren et al., 2010, 2013, 2014). We propose that the general mnemonic function of mPFC 

is to establish links between separate elements across time and space. Taken together, we 

found that the hippocampus-mPFC circuit performs event segmentation and integration during 

memory formation of continuous experience. These findings demonstrate the contribution of 

two complementary event processing mechanisms and underlying neural representations in 

episodic memory formation. The hierarchical network model of event segmentation proposes 

that higher-order regions receive event representations from lower-order perceptual regions, 

and then transfer these representations to the hippocampus for storage (Baldassano et al., 

2017; Hasson et al., 2015). Our study suggested that event integration is another key cognitive 

process involved in event memory by showing how distinct event representations are integrated 

by similar connectivity patterns of the hippocampus and mPFC.

Our study, together with previous studies also combining human fMRI with naturalistic stimuli 

(Baldassano et al., 2017; Janice Chen et al., 2017; Hasson et al., 2008), demonstrates the potential 

of this approach to advance our understanding of the human memory system, in particular for the 

formation of real-life memories. Similar paradigms and analyses can be easily adapted in clinical 

(e.g., memory and affective disorders) and developmental neuroimaging studies (e.g., children 

and older adults) to reveal changes related to disease or (mal)development. For example, 

fMRI-based event segmentation and integration measures could be used to probe how these 

processes are impaired in Alzheimer’s disease and mild cognitive impairment, how they develop 

from childhood to adulthood and diminish in normal aging. In addition, connectivity patterns have 

the potential to inform our understanding of other cognitive operations that require integration of 

information, such as inferential reasoning (Preston & Eichenbaum, 2013). However, due to the low 

temporal resolution of fMRI, the directionality of information flow between the neocortical regions 

of the ‘hierarchical memory system’ (Hasson et al., 2015) and the hippocampus remains unclear. 

Future application of deep-source magnetoencephalography (MEG) (e.g., Backus, Schoffelen, 

Szebényi, Hanslmayr, & Doeller, 2016) or intracranial electroencephalography (iEEG) (e.g., 

Jafarpour, Griffin, Lin, & Knight, 2019) with naturalistic memory paradigms may bridge this gap.
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In sum, we show that the hippocampus and mPFC may perform a dual function during naturalistic 

memory formation. Both regions segment events by representing them with distinct activation 

patterns, while also integrating those events by retaining similar connectivity patterns across 

events, enabling the representation of a coherent narrative. The ability to measure segmentation- 

and integration-related neural operations using fMRI opens new opportunities to investigate the 

mechanisms of memory encoding for real-life experience.
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Figure S2.1-S2.10

1. Activity time courses across event boundaries are related to the subsequent recall 

To identify regions in which the univariate neural responses to event boundaries were related 

to subsequent memory, we directly compared the activity time courses around boundaries for 

remembered (R) with forgotten (F) events. We were interested in the activity time courses for 

an event that was associated with successful memory (R vs. F; Figure S2.2, highlighted in 

blue shading), but also how the activation changed in the following event. This gave us a 2*2 

design with Memory (R and F) and Event (current and next event) as independent variables 

(Figure S2.2). For each of the six predefined ROIs (Figure S1.2), BOLD signals around event 

boundaries (from 6 volumes before to 6 volumes after each boundary) were extracted from the 

time series during movie watching, labeled (R vs. F) based on the memory performance for 

the first of the two events, averaged across all the available boundaries, and transformed into 

z-scores for each participant.
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The interaction between Memory and Event was significant in early visual cortex (F = 13.109, pFDR 

= .006, �² = 0.45; Figure S2.2A), early auditory cortex (F = 10.852, pFDR = .010, �² = 0.404, 

Figure S2.2B), hippocampus (F = 8.217, pFDR = .017, �² = 0.339, Figure S2.2E), and posterior 

parahippocampal gyrus (pPHG) (F = 15.562, pFDR = .006, �² = 0.493, Figure S2.2F), but not in 

mPFC (F = 3.036, pFDR = .101, �² = 0.160, Figure S2.2C) and PMC (F = 4.718, pFDR = .054, �² 

= 0.228; Figure S2.2D). For the current (first) event, we found greater activation for remembered 

compared to forgotten events in early visual cortex (R: 0.143 ± 0.125 (mean ± SD), F: -0.090 ± 

0.145 (mean ± SD); t = 21.911, pFDR < .001), hippocampus (R: 0.134 ± 0.079 (mean ± SD), 

F: -0.019±0.185 (mean ± SD); t = 11.801, pFDR = .006) and pPHG (R: 0.118 ± 0.083 (mean 

± SD), F: -0.028 ± 0.155 (mean ± SD); t = 13.264, pFDR = .006). This effect was reversed in 

early auditory cortex for the next event, which showed greater activity for forgotten compared 

to remembered events (R: -0.217 ± 0.155 (mean ± SD), F: -0.034 ± 0.136 (mean ± SD); t = 

10.803, pFDR = .030). Consistent with previous research, enhanced activity in the timeframe of 

the current event was associated with successful subsequent recall. To further take into account 

the memory performance of the next event, the response curves were split into four (R-R; R-F; 

F-R; F-F) based on the memory performance of two consecutive events (Figure S2.3).

2.  Event boundary permutation analysis

To confirm that the subsequent memory effect on pattern similarity was only present for actual 

event boundaries (annotated by an independent rater based on the movie narrative), we 

shuffled the timestamps of the original annotated boundaries and tested whether the simulated 

boundaries were associated with memory. To retain the event structure (i.e., avoid cases where 

the pseudo-events are too long/short), we held onto the duration of the 50 events and only 

scrambled their order, which led to randomly placed event boundaries across the sequence with 

the original set of event durations. Our calculation for activation and connectivity patterns was 

then performed on these permutated boundaries, yielding simulated activation, and connectivity 

pattern similarities. 

Paired t-tests were performed to test whether the pattern similarity indices were still associated 

with memory labels. This permutation procedure followed by the t-test was repeated 5000 times 

for both the activation and connectivity patterns, which gave us a null distribution of t and p values. 

The p-value from the analysis using genuine event boundaries was subsequently corrected 

against this distribution by calculating the proportion of sampled permutations where the p 

values were smaller than or equal to the real observation. The regions that showed significant 

differences in activation pattern similarities are the same ones as in the previous analysis using 

real event boundaries: early auditory area (p = 0.001), hippocampus (p = 0.003), mPFC (p 

= 0.01), and pPHG (p = 0.006) (Figure S2.4). For connectivity patterns, the SME only exists 
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for actual event boundaries in the early auditory area (p = 0.012), visual areas (p = 0.005), 

hippocampus (p = 0.005), and PMC (p = 0.012) (Figure S2.6). These results confirmed the 

specificity of the SME to actual event boundaries.

Figure S2.1. Six predefined regions-of-interest (ROIs) used. (A) (B) Early visual and auditory cortex were 
functionally defined in the literature using inter-subject correlation analysis. (C) (D) The medial prefrontal 
cortex (mPFC) and primary motor cortex (PMC) were defined in the functional atlas of the resting-state 
default mode network. (E) (F) The hippocampus and posterior parahippocampal gyrus were anatomically 
defined from the probabilistic Harvard-Oxford Subcortical Structural Atlas using the threshold of 50%.
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Figure S2.2. Activity time courses of remembered and forgotten events around event boundaries in six 
ROIs. We compared activity time courses of sequential event pairs (Remembered vs. Forgotten) based on 
subsequent memory performance of the first event across six ROIs using repeated two-way ANOVA (memory; 
event). The left side (blue) shows activity for an event that was later remembered or forgotten, while the right side 
(white) shows what happened to the signal after those events. The early visual cortex (F = 13.109, pFDR = .006,  
�² = 0.45, panel A), hippocampus (F = 8.217, pFDR = .017, �² = 0.339, panel E), and pPHG (F = 15.562, pFDR 
= .006, �² = 0.493, panel F) demonstrated a significant interaction between event and memory. Post-hoc 
comparison revealed greater activation for remembered compared to forgotten events during the current 
event. Similar patterns were seen in PMC (F = 4.718, pFDR = .054, �² = 0.228, panel D) and mPFC (F = 
3.036, pFDR = .101, �² = 0.160, panel C), but did not survive correction for multiple comparisons. The reverse 
effect (higher activation for forgotten vs. remembered events) was found in early auditory cortex (F = 10.852, 
pFDR = .010, �² = 0.404, panel B). 
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Figure S2.3. Univariate response curves based on memory performance of two consecutive events. 
BOLD signals around the event boundaries (6 TRs before and after event offset; 13 time points including 
the boundary itself) were extracted from the time series, averaged across all voxels, and z-scored within 
each region. Considering the memory label of the two consecutive events simultaneously, the time course 
segments were categorized into four types: R (green)/F (red) + R (solid)/F (dashed), and were plotted 
against the time (in TRs) relative to the event boundary.
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Figure S2.4. Event boundary permutation analysis for activation pattern similarity. The p-value obtained 
from the true event boundary similarity analysis (red dashed line) is corrected based on the null distribution 
(histogram) generated by random permutation of event intervals (5000 times). A smoothed density estimate 
calculated by stat_density with ggplot2 and R is indicated by the semitransparent region. The corrected 
values for each ROI are shown in the corresponding subplots.
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Figure S2.5. Event-specific correlational analysis between activation pattern similarity and memory 
performance. Memory performance per event is calculated by averaging the number of participants that 
successfully recalled the event divided by the total number of participants (recall rate). Pearson’s correlation 
coefficient r and p-value (uncorrected) are shown for each ROI. For the regions that demonstrated a 
significant correlation (i.e., hippocampus and pPHG), a linear model based regression line (blue) is fitted to 
the data points with the confidence interval shown in gray. To better visualize the correlation, the color of the 
data points are set to change in the direction of the first principal component of the data.
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Figure S2.6. Event boundary permutation analysis for connectivity  pattern similarity. Analyzing 
connectivity pattern similarity with “scrambled” event boundaries. The p-value obtained from the true 
event boundary similarity analysis (red dashed line) is corrected based on the null distribution (histogram) 
generated by random permutation of event intervals (5000 times). A smoothed density estimate calculated 
by stat_density with ggplot2 and R is indicated by the semitransparent region. The corrected values for each 
ROI are shown in the corresponding subplots.
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Figure S2.7. Event-specific correlational analysis between connectivity pattern similarity and memory 
performance. Memory performance per event is calculated by averaging the number of participants that 
successfully recalled the event divided by the total number of participants (recall rate). Pearson’s correlation 
coefficient r and p-value (uncorrected) are shown for each ROI. For the regions that demonstrated a 
significant correlation (i.e., all six regions except for mPFC), a linear model based regression line (blue) is 
fitted to the data points with the confidence interval shown in gray. To better visualize the correlation, the color 
of the data points are set to change in the direction of the first principal component of the data.
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Figure S2.8. Relationship between all possible event distance and hippocampal neural similarities. 
(A) Relationship between hippocampal activation pattern similarities and event distance. Event distance 
ranges from 1 to 49. The shallow red bar indicates that the similarity is significantly lower than 0 after false 
discovery rate (FDR) correction. (B) Relationship between event distance and hippocampal connectivity 
pattern similarities. Event distance ranges from 1 to 49.
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Figure S2.9. Relationship between event distance and hippocampal activation and connectivity 
pattern similarities. (A) Positive correlation between event distance (ranging from 1 to 40) and hippocampal 
activation pattern similarities (r = 0.21, praw = 1.8 × 10-8). (B) Negative correlation between event distance 
(ranging from 1 to 49) and hippocampal connectivity pattern similarities (r = -0.439, praw = 1.8 × 10-33).

Figure S2.10. Identifying event segmentation and integration computations separately across the 
neocortical parcellation. (A) Distinct activation patterns of these brain parcels across event boundaries 
correlate with better event memory. (B) Similar connectivity patterns of these brain parcels across event 
boundaries relate to better event memory. (C) Similar connectivity patterns of these brain parcels across 
event boundaries link to better order memory. All results are displayed at pFDR < 0.05 across 1000 brain 
parcels.
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Abstract

Flexible behavior requires switching between different task demands. It is known that such 

task-switching is associated with costs in terms of slowed reaction time, reduced accuracy, or 

both. The neural correlates of task-switching have usually been studied by requiring participants 

to switch between distinct tasks that recruit different brain networks. Here, we investigated the 

transition of neural states underlying switching between two memory-related processes with 

opposite task demands (i.e., memory retrieval and memory suppression). We investigated 

26 healthy participants who performed a Think/No-Think task while being in the fMRI scanner. 

Behaviorally, we show that it was more difficult for participants to suppress unwanted memories 

when a No-Think was preceded by a Think trial instead of another No-Think trial. Neurally, we 

demonstrate that Think-to-No-Think switches were associated with an increase in control-related 

and a decrease in memory-related brain activity. Neural representations of task demand, assessed 

by decoding accuracy, were lower immediately after task switching compared to the non-switch 

transitions, suggesting a switch-induced delay in the neural transition towards the required 

task demand. This suggestion is corroborated by an association between demand-specific 

representational strength and demand-specific performance in switch trials. Taken together, we 

propose that the brain’s delayed transition of neural states towards the task demand at hand is 

associated with a switch cost leading to less successful memory suppression. 

Keywords: task switching; memory suppression; memory retrieval; cognitive control; fMRI
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Introduction

In everyday life, we are continuously switching between different tasks (Monsell, 2003). Transitions 

between task demands have often been studied using task-switching paradigms in which 

participants are required to switch between two or more distinct tasks (Meiran, 2010). Usually, 

participants perform less accurately and/or more slowly immediately after switches (i.e., switch 

costs) (Goschke, 2000; Jersild, 1927; Rogers & Monsell, 1995; Spector & Biederman, 1976). 

Results from univariate fMRI studies suggested the involvement of prefrontal-parietal regions in 

task switching (Braver et al., 2003; Dove et al., 2000; O. Gruber et al., 2006; Richter & Yeung, 

2014). Two studies (Loose et al., 2017; Waskom et al., 2014) used multivariate fMRI methods (J. 

D. Cohen, Daw, Engelhardt, Hasson, Li, Niv, Norman, Pillow, Ramadge, Turk-Browne, & Willke, 

2017; Haynes, 2015) to investigate how task switching modulates task representations but 

reported mixed results. Waskom and colleagues reported stronger task representations after a 

shift in task demands (Waskom et al., 2014), while Loose and colleagues found no difference 

in task representations between the switch and the non-switch condition (Loose et al., 2017). 

Previous experiments that investigated task switching were typically designed to minimize 

the perceptual differences between conditions, but not to maximize differences in underlying 

cognitive demands (Braver et al., 2003; Kiesel et al., 2010; Loose et al., 2017; Waskom et al., 

2014). Behavioral and neural correlates of task-switching between two opposite tasks within one 

cognitive domain remain largely unexplored. Switching between two opposite task demands 

should be cognitively more challenging than between unrelated tasks, because they may be 

based on (partly) overlapping neural mechanisms. More importantly, it provides us with the 

opportunity to examine the fast-adaptive transition between task demands represented in the 

neural states of the same brain networks in response to switches. Here, we used a modified 

Think/No-Think paradigm (Michael C Anderson & Green, 2001; B. J. Levy & Anderson, 2012) 

to probe task-switching within the memory domain. Specifically, participants were instructed 

to switch between memory retrieval and memory suppression according to trial-specific 

instructions. We asked whether we can find behavioral switch costs when participants switch 

between two opposite memory tasks.

To detect the neural source of switch costs, we analyzed the dynamic transitions between 

neural states during task switching using time-resolved multivariate decoding. Our analyses 

focused on frontoparietal regions associated with control and a set of regions associated with 

memory retrieval. Cognitive and neural models of memory retrieval and suppression suggest 

that successful retrieval could be the result of cooperation between an inhibitory control network 

and an episodic retrieval network (Rugg & Vilberg, 2013), while effective suppression depends 

on top-down control of the inhibitory control network upon a general episodic retrieval network 
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(M. C. Anderson & Hanslmayr, 2014). Previous fMRI studies of memory suppression supported 

this idea by showing that compared to Think trials, No-Think trials are associated with stronger 

activation in control-related regions including the dorsolateral prefrontal cortex, ventrolateral 

prefrontal cortex, inferior parietal lobule, and supplementary motor area (Michael C Anderson, 

2004; Guo et al., 2018; W. Liu, Peeters, et al., 2020). At the same time, these activity increases 

are accompanied by reduced activity in memory-related areas in the medial temporal lobe, 

including the hippocampus (M. C. Anderson & Hanslmayr, 2014).

We hypothesized that a delayed transition between neural states that represent task demands 

could be the neural underpinning of behavioral switch costs because failing to update neural 

states on time could result in a neural state that is optimal for the opposite (e.g., retrieval), but not 

the current (e.g., suppression), task demand. This assumption is built on the idea that the human 

brain can demonstrate diverse brain states during different cognitive tasks or environmental 

demands (Cocuzza et al., 2019; Gonzalez-Castillo et al., 2015; Hermans et al., 2011; Sadaghiani 

et al., 2015; Shine et al., 2016; Shine & Poldrack, 2018; Westphal et al., 2017). The task-switching 

paradigm is suitable to study such a rapid neural reconfiguration process because it allows 

us to compare directly how different task demands are represented in neural states and how 

transitions of neural states are associated with switch costs.    

  

Results

Behavioral results 

Our study used a modified think/no-think (TNT) paradigm (Figure 3.1A) with trial-by-trial reports 

of (in)voluntary memory retrieval (i.e., retrieval/intrusion frequency rating) (B. J. Levy & Anderson, 

2012). As intended, most of the associations were successfully recalled in Think trials (1-mean 

P(Never)=84.05%, SD=11.79 %, range from 56.25% to 100%; Figure S3.1A), while participants 

suppressed memory retrieval successfully in No-Think trials in about half of the trials (mean p(Never) 

=50.62%, SD=25.35%, range from 4% to 92.5%; Figure S3.1B). 

Our central aim was to determine whether there were behavioral switch costs in the TNT task 

and to reveal their neural underpinnings. We defined each trial as a “switch” or “non-switch” 

trial considering both the task demand of the current trial and its predecessor (Figure 3.1B). 

Specifically, we identified “switch” trials if a preceding trial had the opposite task demand (e.g., 

previous trial: Think; current trial: No-Think). By contrast, if the current trial and the preceding 

trial had the same task demand, then the current one was a “non-switch” trial. We compared 

the trial-by-trial performance between “switch” and “non-switch” trials for the Think and the 

No-Think condition separately. Participants showed comparable performance for “switch” and 



 | 73

The dynamic transition between neural states is associated with the flexible use of memory

3

“non-switch” trials in the Think condition (t(25)=0.348, p=0.731, Cohen’s d=0.068; Figure 3.1C), 

while they reported more memory intrusions for “switch” trials compared to “non-switch” trials 

in the No-Think condition (t(25)=3.19, p=0.004, Cohen’s d=0.627; Figure 3.1D), suggesting 

switch costs when the task demand switched from a previous Think trial to a current No-Think 

trial.

After the TNT task, participants performed a final memory test. Results from this task had been 

reported in another publication in detail (W. Liu, Kohn, et al., 2020) and supplemental materials 

(Figure S3.2) of this study. Here, we focused on participants’ performance during the final 

memory test at the individual level. More specifically, we quantified individual differences in both 

subjective and objective suppression-induced forgetting effects and correlated them with fMRI 

measures (see below).

fMRI results

To replicate the univariate neural signature of memory suppression reported in prior studies (M. 

C. Anderson & Hanslmayr, 2014; Michael C Anderson, 2004), we first conducted a univariate 

analysis to contrast brain regions engaged in memory suppression and memory retrieval 

(i.e., No-Think vs. Think). We found an increased activity for No-Think trials in regions that are 

consistently involved in memory suppression, including the bilateral dorsolateral prefrontal 

cortex (DLPFC), bilateral insula, bilateral inferior parietal lobule (IPL), supplementary motor area 

(SMA), and middle cingulate gyrus (Figure 3.1E; Table S3.1). Additionally, we found higher 

activity in ventral visual areas and the right thalamus during No-Think compared to Think trials. 

Next, we contrasted the Think condition with the No-Think condition and found the increased 

activity for Think condition in a set of regions including the medial prefrontal cortex (mPFC), 

posterior cingulate cortex (PCC),  hippocampus, inferior parietal lobule (IPL), precuneus, 

angular gyrus, and cerebellum (Figure 3.1F; Table S3.2). Together with the behavioral results 

from the final memory test, these results confirmed that participants in our experiment followed 

task instructions, leading to univariate neural signatures of memory retrieval and suppression 

consistent with prior findings (Michael C Anderson, 2004; Hulbert et al., 2016; B. J. Levy & 

Anderson, 2012), as well as recent meta-analyses of memory suppression (Guo et al., 2018; W. 

Liu, Peeters, et al., 2020).    
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Figure 3.1 (A) After learning 48 location-picture associations, participants performed a Think/No-Think 
task while brain activity was measured by fMRI. During think trials, participants were instructed to retrieve 
associated pictures based on the highlighted locations as memory cues. By contrast, during no-think trials, 
participants were required to suppress the tendency to retrieval the associated pictures. (B) The sequence of 
trials was designed to probe task switching between two task demands (i.e., Think and No-Think). When the 
task demand of the current trial was the same as the previous trial, it was defined as the “Non-switch” trial. By 
contrast, while the task demand of the current differed from the previous trial, it was defined as the “switch” 
trial. (C) During Think trials, participants demonstrated comparable memory retrieval performance (p=0.73, 
Cohen’s d=0.068) for both “switch” and “Non-switch” trials. (D) During No-Think trials, participants reported 
worse memory suppression performance, indexed by more memory intrusions for “switch” trials compared 
to “non-switch” trials (p=0.004, Cohen’s d=0.627). (E) Brain regions showed increased activation during 
No-Think trials compared to Think trials. (F) Brain regions showed increased activation during Think trials 
compared to No-Think trials.
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The transition of large-scale neural states from memory retrieval to memory suppression

Based on neurocognitive models of memory suppression (M. C. Anderson & Hanslmayr, 2014), 

we focused on the neural dynamics within the inhibitory control network and the memory retrieval 

network. First, we used Neurosynth (https://neurosynth.org/), an automatic meta-analysis tool of 

neuroimaging data (Yarkoni et al., 2011), to identify the inhibitory control network and memory 

retrieval network independently from our fMRI data. Using the term “inhibitory control” and 

“memory retrieval,” we performed term-based meta-analyses to reveal two distinct brain networks 

of inhibitory control (Figure S3.3A) and memory retrieval (Figure S3.3B) separately. The two 

meta-analytic maps have overlapping areas, including the IFG, insular, SMA, inferior parietal 

lobule (Figure S3.3C). Interestingly, the latter areas are highly similar to a “task switching” map 

generated by Neurosynth using the term “task switching” (Figure S3.3D). 

In the next step, to enable a regions-of-interest analysis, we separated the identified inhibitory 

control, memory retrieval and overlapping networks into regions-of-interest (ROIs) based on the 

combination of a connectivity-based neocortical parcellation (number of parcels=300) (Schaefer 

et al., 2018) and subcortical regions (number of regions=14) (Details see Methods). Using this 

approach, we identified 71 parcels as memory-related regions, 29 parcels were categorized 

as control-related regions, and 10 parcels were labeled as overlapping regions (Figure 3.2A). 

Finally, BOLD time series were extracted from each voxel, averaged within each ROI, and further 

processed. 

Using these time series, we characterized the group-average transition of neural states when 

the task demand changed from Think to No-Think trials (Figure 3.2B). Based on the task 

instruction, the time series were firstly split for the Think and No-Think conditions separately 

and then concatenated across all runs of all participants. For each task demand, all ROIs were 

ranked based on their state-specific averaged neural activity across runs (the highest activity 

was ranked first) to represent their relative dominance during that neural state (i.e., Think or 

No-Think). For control purposes, the same analysis was repeated for raw signal intensities (Figure 

S3.4B) and their Z-values (Figure S3.4C) and yielded highly similar patterns. A Kruskal-Wallis 

test showed that during Think trials, memory-related regions, control-related regions, and 

overlapping regions differed in their ranks (H(2) =40.48, p<0.001). Post-hoc Mann-Whitney tests 

using a Bonferroni-adjusted alpha level of 0.017 (0.05/3) were used to compare all group pairs. 

Memory-related regions (mean memory=40.22, SD memory=27.39) ranked higher than control-related 

regions (mean control=82.34, SD control=22.28) and overlapping regions (mean overlap=75.10, 

SD overlap=19.08) (memory-related vs. control-related: U=263, p<0.001; memory-related vs. 

overlapping: U=108, p<0.001). Control-related regions and overlapping regions did not differ 

significantly in their ranks (U=104, p=0.096). Three types of regions also differed in their ranks 

during No-Think trials (H(2) =36.60, p<0.001). Memory-related regions (mean memory=67.96, SD 
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memory=27.94) ranked lower than control-related regions (mean control=27.24, SD control=23.13) and 

overlapping regions (mean overlap=37.80, SD overlap=21..10) (memory-related vs. control-related: 

U=238, p<0.001; memory-related vs. overlapping: U=144, p=0.001). Control-related regions 

and overlapping regions did not differ significantly in their ranks (U=101, p=0.081). All 

comparisons between memory-related and control-related/overlapping regions were significant 

neural state transition by dividing all ROIs into three groups (i.e., increased group, stable group, 

and decreased group) based on their relative changes in rank (See Supplemental Material). 

The transition of neural states during the TNT task is associated with subsequent 

suppression-induced forgetting

We already demonstrated that the activity of control-related regions increased, and the activity of 

memory-related regions decreased when the task demands switched from Think to No-Think. To 

assess if these regional brain activity changes are associated with the behavioral consequence 

of memory suppression (i.e., suppression-induced forgetting effect), we quantified this neural 

state transition at the individual level and examined whether individual differences in the transition 

predict individual subsequent suppression-induced forgetting measures (i.e., subjective and 

objective suppression score). The subjective and objective suppression score was calculated 

by subtracting the memory measure (i.e., confidence rating or recall accuracy) of suppression 

associations (i.e., “No-Think” items) from the control association separately.

Based on the group-level fMRI results, we calculated a state transition index to represent the 

degree of neural transition during the TNT task for each participant. The state transition index was 

calculated by adding up the averaged relative decreases in ranks of all memory-related regions 

and the averaged relative increase in rank of all control-related regions. The state transition index 

tended to be positively correlated with individual differences in objective suppression scores 

(r=0.36, p=0.06; Figure 3.2C), and subjective suppression scores (r=0.38, p=0.05; Figure 

3.2D). For validation purposes (not an independent analysis), we used an alternative method 

(i.e., state transition index Version2(V2)) to measure neural state transitions for each participant. 

This method was based on additional analyses of Think-to-No-Think neural state transition (See 

Supplemental Materials): all ROIs were divided into three groups (i.e., increased group, stable 

group, and decreased group) based on their relative changes in ranks. The state transition index 

V2 was calculated as the sum of the percentage of memory-related nodes within the decreased 

group and percentage of control-related nodes within the increased group. We also found the 

same significant correlations between state transition index V2 and both objective and subjective 

suppression scores (Figure S3.5). These results suggested that the transition of neural states 

during the TNT task is relevant for the subsequent suppression-induced forgetting measured in 

the final memory test. 
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Figure 3.2 (A) Memory retrieval network (GREEN) and inhibitory control network (RED) was defined using 
the Neurosynth independent of fMRI data analyzed in this study. The overlap between the two brain networks 
was defined as the overlapping network (BLUE). (B) When the task demand switched from Think to No-Think, 
the activity of brain regions within the inhibitory control network increased, while the activity of brain regions 
within the memory retrieval network decreased. (C) Individual differences in the neural state transition (state 
transition index details see Methods) tended to correlate with the objective suppression-induced forgetting 
effect during subsequent memory retrieval task (r=0.36, p=0.06). (D) The same index also tended to 
correlate with the subjective suppression-induced forgetting effect (r=0.38, p=0.05). 

Switch of task demand is accompanied by the delayed transition between neural states

To reveal how neural representations of task demands change during task switching, we 

used a multivariate decoding method to track the dynamics of neural state transitions on the 

volume-by-volume basis (Figure 3.3A). Support Vector Classification (SVC) was used to classify 

the underlying neural states (i.e., Think vs. No-Think) based on the fMRI activity intensity of all 

110 ROIs at each given time point. Participant-specific classifiers were fitted on neural and task 

demand data from N-1 runs (i.e., four runs) and tested on the one remaining test run. Then the 

decoding accuracy was evaluated for each TNT run by comparing the decoded task demands 

with the actual demands. Averaged across runs, we were able to decode task demands based 

on ROIs’ neural activity with the mean accuracy of 59.5% (SD=3.9% range from 52.5% to 67.1%) 

(Figure 3.3B). This accuracy is significantly higher than the chance level (i.e., 50%) (t(25)=12.5, 

p<0.001, Cohen’s d=2.453). We generated the confusion matrix of our decoding analysis to 

quantify all types of correct and incorrect classifications (Figure 3.3C). 57.9% (SD=4.1%, range 

from 50.6% to 65.7%) of Think time points were correctly classified as Think. Among all No-Think 

time points, 61.1% (SD=3.9%, range from 53.9% to 68.4%) of them were correctly classified 

as No-Think. To reveal the relative contribution of each ROI to this decoding performance, we 

visualized the neural state-predictive pattern (i.e., SVC discriminating weights) in Figure 3.3D, 

which revealed a frontoparietal network of strong task demand representation, including the 

dorsal anterior cingulate cortex (dACC), DLPFC, IFG, superior, and inferior parietal lobule (Table 

S3.3). These regions were largely similar to the overlapping network (Figure S3.6).  
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To reveal how the switch of task demands affected underlying neural state transitions, we 

calculated the decoding accuracy for “switch” and “non-switch” time points separately. Higher 

decoding accuracy represented a timely update of neural states according to the current task 

demand, thus stronger neural representation of task demand. Compared to “switch” time points, 

task demand of “non-switch” time points can be decoded more accurately (t(25)=3.93, p<0.001, 

Cohen’s d=0.77; Figure 3.3E). That is to say, time points within No-Think trials following a Think 

trial were more often misclassified as Think trials compared to a No-Think trial following another 

No-Think trial. This pattern of results was also observed for Think trials. These findings suggest 

a delayed neural state transition immediately after the task switching.

Mismatches between task demand and underlying neural state relate to switch costs

Unlike most of the decoding analyses, which usually focused on the accuracy of the classifier, 

here we were particularly interested in the relationship between misclassified moments and 

switch costs. We already demonstrated that these misclassifications were largely induced by 

task switching, and we predicted that this mismatch could be the neural source of behavioral 

switch costs. To test this idea, we averaged the trial-by-trial performance measures (i.e., 

retrieval frequency rating for Think trials and intrusion frequency rating for No-Think trials) for 

four situations at issue (i.e., Think-Correct classification, Think-Incorrect classification, No-Think- 

Correct classification and No-Think- Incorrect classification) within switch trials. 

We found that participants’ behavioral performance was impaired during these mismatch 

moments (i.e., incorrect classifications (mean incorrect=43.9%; SD incorrect=2.6%; ranging from 

38.5% to 49.8% of all classifications)) immediately after task switches. Specifically, during 

the Think condition, when neural states were mistakenly classified as No-Think, the retrieval 

frequency rating was lower (t(25)=3.57, p=0.001, d=0.701; Figure 3.3F) compared to the 

situation in which task demands matched with the neural state. During No-Think trials, if neural 

states were erroneously decoded as Think, participants reported higher intrusion frequency 

rating (t(25)=-3.08, p=0.005, d=-0.606; Figure 3.3G) compared to the situation in which 

classifications were correct.

In our exploratory analyses, we found that such mismatch moments not only occurred during 

the task-switching but was also observed (but less frequently) during non-switch trials. Using the 

same decoding method, but focusing on non-switch time points, we found a similar detrimental 

effect of mismatch on behavioral performance (Figure S3.7). These findings suggested that 

spontaneous, uninstructed neural state transitions that do not fit current task demands also have 

behavioral impacts.
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Figure 3.3 (A) Neural state decoding analysis. We trained the decoder based on large-scale brain network 
activity to classifier the task demand represented in the brain. We hypothesized that immediately after the 
switch of the task demand, the transition of the underlying neural state could be delayed. Therefore, the task 
demand could be misclassified as the opposite by the decoder. The real task demand was compared with 
the decoded neural state. The correctly decoded moments were labeled as “match” (e.g., Think as Think), 
while incorrectly decoded moments were defined as “mismatch” (e.g., Think as No-Think). (B) Decoding 
accuracies were presented for each participant and against the chance level of 50%. (C) Confusion matrix 
for four types of classification results. On average, 39% of the Think moments were labeled as No-Think, 
and 42% of the No-Think moments were regarded as Think moments by the decoder. These were the 
so-called “mismatch” moments depicted in Figure 3A. (D) The contribution of different brain regions during 
the decoding. This predictive pattern mainly includes the dACC, DLPFC, IFG, superior, and inferior parietal 
lobule. (E) More “mismatch” moments were found immediately after the task switching, indexed by the lower 
decoding accuracies during switch compared to non-switch moments (p<0.001, Cohen’s d=0.77). (F) After 
the task switching, when the decoded neural state did not match with the task demand (i.e., Think decoded 
as No-Think), participants reported worse memory retrieval performance during Think trials (p<0.001, 
Cohen’s d=0.70). (G) When the neural decoder misclassified No-Think moments as Think, participants 
reported more memory intrusions during No-Think trials (p=0.005, Cohen’s d=0.606).
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Neural state transitions are not the results of differences in head motion

We observed large-scale neural state transitions during the TNT task. Individual differences in 

these transitions were associated with the subsequent suppression-induced forgetting effect. 

There is a possibility that these neural state transitions are based on artifacts caused by different 

levels of participants’ head motion (P. Huang et al., 2018; Siegel et al., 2017) between Think 

and No-Think trials since more inhibitory control resource was required for No-Think trials 

compared to Think trials (M. C. Anderson & Hanslmayr, 2014; Michael C Anderson & Green, 

2001). Therefore, we examined the relationship between head motion, neural state transitions, 

and behaviors to rule out this alternative explanation. 

We analyzed the time series of head motion (i.e., framewise displacement (FD) (Power et al., 

2012)) during the TNT task. First, there is literally no difference in mean FD values between 

Think and No-Think trials (FDThink=0.149 (SD=0.047); FDNo-Think=0.149 (SD=0.046); t(25)=0.30, 

p=0.76, Cohen’s d=0.06). Second, for each participant, we calculated differences between the 

head motion of Think and No-Think trials (i.e., FDThink-FDNo-Think) and found no correlation between 

these differences and state transition indices (r=-0.3, p=0.12), objective suppression scores 

(r=-0.14, p=0.46) or subjective suppression scores (r=-0.23, p=0.25). Third, we asked whether 

head motion could affect our neural state decoding analysis. The head motion level tended 

to be lower (t(25)=-1.96, p=0.06, d=-0.38) for correct decoding (FDcorrect=0.147; SD=0.045), 

compared to incorrect decoding (FDincorrect=0.151; SD=0.048). This difference raised the 

question of whether the lower decoding accuracy for switch compared to non-switch condition 

resulted from higher head motion instead of differences in the neural representation related 

to task demands. Therefore, we also compared head motions between the switch and the 

non-switch conditions. In fact, we found that head motion is even lower in the switch condition 

(FDswitch=0.145 (SD=0.048); FDnon-switch=0.150 (SD=0.047); t(25)=3.35, p=0.003, d=0.65). This 

result ruled the head motion out as an alternative explanation for the lower decoding accuracy for 

the switch condition. If the lower decoding accuracy during switching were driven by excessive 

head motion dominantly, we would observe relatively higher instead of lower head motion. In 

sum, analyses of head motion suggest that our neuroimaging results are not likely to be the 

consequences of variations in head motions.  
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Discussion

Task switching is a crucial cognitive ability that has been intensively studied using behavioral 

and neuroimaging methods (Meiran, 2010; Richter & Yeung, 2014; Ruge et al., 2013). Here, 

we investigated the task switching process between memory retrieval and suppression and 

demonstrated that memory suppression is more difficult when the task demand for the participants 

just switched from retrieval to suppression. Applying multivariate decoding methods to human 

fMRI data, we revealed that immediately after the switch, task demands were weakly represented 

by the inhibitory control and memory retrieval networks, indexed by the lower decoding accuracy, 

compared to non-switch trials. Importantly, during the switching, when the neural representation 

of task demand cannot be updated in time to match the current demand, participants reported 

more memory intrusions in No-Think trials and less memory retrieval in Think trials. Together, 

we propose a novel mechanism that explains behavioral switch costs during task switching 

between retrieval and suppression: delayed transition of task-related neural states is associated 

with behavioral switch costs. That is to say, if the neural state cannot be timely updated after the 

switch of task demand, behavioral performance is compromised. 

In the current study, participants were instructed to perform one of two opposite memory-related 

tasks (i.e., memory retrieval and memory suppression), with the task demand staying the same or 

switching between consecutive trials. Similar to what was reported in the classical task-switching 

paradigms (Jersild, 1927; Spector & Biederman, 1976), we found switch costs that are specific to 

memory suppression. Participants reported more memory intrusions when the current No-Think 

trial followed a Think trial, suggesting a higher demand for cognitive control over the tendency 

to retrieve during switch trials compared to non-switch trials. This lasting effect of memory 

retrieval on the subsequent memory suppression has not been reported before, but Hulbert 

and colleagues reported a lasting effect of memory suppression on the subsequent memory 

formation (Hulbert et al., 2016): when healthy participants suppressed unwanted memories, they 

were more likely to fail to encode information that was presented after a suppression trial. It was 

proposed that memory suppression created an amnesic time window, preventing the experience 

within the window being transformed into long-term memory. Evidence from fMRI supported this 

model by showing the reduction of hippocampal activity during memory suppression trials, and 

the positive correlation between individual differences in decreased hippocampal activity and 

the extent of memory impairment across participants (Hulbert et al., 2016).

Our finding of more memory intrusions during the No-Think trials that followed a Think trial could 

result from a similar mechanism: the preceding Think trials creates a time window in which 

the hippocampus remains active to support retrieval. However, if the transition of the neural 

state is delayed, the following No-Think trials are still located within this window, and therefore 
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more prefrontal control resources are needed to down-regulate hippocampal activity. We tested 

this prediction beyond the hippocampus: large-scale neural activity of the inhibitory control and 

memory retrieval networks were analyzed by multivariate decoding methods to track the adaptive 

neural state transitions. We first characterized the transitions in neural states of memory retrieval 

and inhibitory control networks between Think and No-Think trials. Consistent with previous 

models of memory suppression (M. C. Anderson & Hanslmayr, 2014), our results showed 

that when the task demand switched from retrieval to suppression, memory retrieval-related 

regions, mainly including the hippocampus and regions of DMN, decreased their neural activity, 

while inhibitory control-related regions, such as dACC and LPFC, increased their activity. We 

also examined the relationship between individual differences in the efficiency of neural state 

transitions and the suppression-induced forgetting effect measured in the subsequent final 

memory test and found a positive correlation between them. There are two possible explanations 

for how neural state transitions are related to the effect of memory suppression: either larger 

or smaller state transitions are associated with stronger suppression effect. The more intuitive 

explanation is that larger transitions are beneficial for suppression; however, our data suggested 

the opposite: participants who demonstrated less neural reconfiguration showed stronger 

memory suppression effect in the following final memory test. This finding is nevertheless 

consistent with a previous study, which demonstrated that higher intelligence is associated with 

less task-related neural reconfiguration (Schultz & Cole, 2016). Our data, together with this study, 

may suggest that less neural reconfigurations could reflect optimization for efficient (i.e., less) 

state updates, reducing processing demands (Schultz & Cole, 2016). This optimal task-related 

neural reconfiguration could then be beneficial for memory suppression.  

Recent human fMRI studies revealed task representations using multivariate decoding methods. 

Brain regions such as the parietal cortex, medial, and lateral PFC encode the current task 

demands (Bode & Haynes, 2009; Cole et al., 2011; Etzel et al., 2016; Gilbert, 2011; Momennejad 

& Haynes, 2013; Waskom et al., 2014; Wisniewski et al., 2015; Woolgar et al., 2011) and our study 

provided further support for this idea by showing that neural activity patterns of these regions 

largely contributed to successful discrimination between two kinds of visually highly similar trials 

with opposite task demands (i.e., memory retrieval and suppression). These identified regions 

have been previously associated with cognitive processing such as retrieval, maintenance, the 

process of rules or demands during task switching (Bunge et al., 2003; Gilbert, 2011; Reverberi 

et al., 2012; Sakai & Passingham, 2003; Woolgar et al., 2011). Beyond that, memory-related 

areas such as the hippocampus and regions within the DMN also contributed to the successful 

decoding in our study because the retrieval-demand and its associated neural activity significantly 

differed between Think and No-Think trials. However, whether these task representations can be 

modulated by external experimental manipulations and detected by fMRI signals is an ongoing 

debate. Task representations are modulated by factors including rule complexity (Woolgar et 
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al., 2015), rewards (Etzel et al., 2016), and skill acquisition (Jimura et al., 2014), but not by 

variables such as task novelty (Cole et al., 2011), difficulty (Wisniewski et al., 2015), or intention 

(Wisniewski et al., 2016; Zhang et al., 2013). Two studies directly investigated whether and 

how cognitive control processes during task switching modulate the neural representation of 

task demands. Waskom and colleagues found that task representations are enhanced after 

switches, indexed by the higher decoding accuracy (Waskom et al., 2014). However, they did 

not find evidence for behavioral switch costs in their sample; thus, the relationship between 

higher decoding accuracy and task representation is unclear. Loose and colleagues did find the 

behavioral switch costs, but no modulation effect in the task representations (i.e., comparable 

decoding accuracy between the switch and non-switch trials) (Loose et al., 2017). They, therefore, 

proposed the switch-independent neural representations of task demands. Compared to the 

mentioned two studies mentioned here, our study found behavioral switch costs for memory 

suppression and lower decoding accuracies for task representations in switch trials. Critically, 

our time-resolved decoding approach revealed the relationship between task representation and 

behavioral performance on a trial-by-trial basis. Specifically, we showed that in switch trials, if the 

underlying neural state matched the external task demand, behavioral performance remained 

intact, while if the neural state was incorrectly represented, task performance was compromised. 

This pattern of results may explain why higher decoding accuracy was reported together with 

limited behavioral switch costs in Waskom’s study (Waskom et al., 2014). As the adaptive 

coding hypothesis suggests (Duncan, 2001, 2010; Waskom et al., 2014), our findings using the 

time-resolved decoding approach demonstrated the dynamic adjustment of task-specific neural 

representations and was able to associate delayed neural transitions with behavioral switch 

costs. 

In summary, our results provide novel insights into the switch between memory retrieval and 

memory suppression. We found evidence for switch costs in memory suppression: it is more 

difficult to suppress unwanted memories immediately after memory retrieval. During switching 

between retrieval and suppression, we observed delayed transitions of neural states that each 

of them separately represents current task demand. Delayed neural transitions were associated 

with switch costs (i.e., unsuccessful suppression and retrieval). These results provide insight into 

the critical role of dynamically adjusted neural reconfigurations in supporting flexible memory 

suppression and the broader neural mechanisms by which humans can flexibly adjust their 

behavior in ever-changing environments. 
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Materials and Methods

Participants

In total, thirty-two right-handed, healthy young participants recruited from the Radboud Research 

Participation System finished all of the experimental procedures. All of them are native Dutch 

speakers. Six participants were excluded from data analyses due to low memory performance 

(i.e., lower the chance level) (n=2), or excessive head motion (n=4). We used the motion outlier 

detection program within the FSL (i.e., FSLMotionOutliers) to detect timepoints with large motion 

(threshold=0.9). There are at least 20 spikes detected in these excluded participants with the 

largest displacement ranging from 2.6 to 4.3, while participants included had less than ten 

spikes. Finally, 26 participants (15 females, age=19-30, mean=23.51, SD=3.30) were included 

in the behavioral and neuroimaging analysis reported in this study. Due to the reconstruction 

error during the data acquisition, one run of one participant is not complete (20-30 images were 

missing). Therefore, that run was not included in our analysis of time series. But unaffected 

acquired images of that run were used in our univariate activation analysis. No participants 

reported any neurological and psychiatric disorders. We further used the Dutch-version of the 

Beck Depression Inventory (BDI) (Roelofs et al., 2013) and State-Trait Anxiety Inventory (STAI) 

(van der Bij et al., 2003) to measure the participants’ depression and anxiety level during scanning 

days. No participant showed a sign of emotional problems (i.e., their BDI and STAI scores are 

within the normal range). The experiment was approved by and conducted in accordance with 

requirements of the local ethics committee (Commissie Mensgebonden Onderzoek region 

Arnhem-Nijmegen, The Netherlands) and the declaration of Helsinki, including the requirement 

of written informed consent from each participant before the beginning of the experiment. Each 

participant got 10 euros/hour for their participating. 

Experiment design

This experiment is a two-day fMRI study, with 24 hours delay between two sessions (Figure 

S8). fMRI data of the day2 final memory test has been published in another publication (W. Liu, 

Kohn, et al., 2020), and the comprehensive reports of the experimental materials and design 

can be found there. Because all of the behavioral and neuroimaging data included in this study 

came from the Day2 session, we just presented a brief description of the Day1 session. On 

day1, we instructed participants to memorize a series of sequentially presented location-picture 

associations, for which 48 distinct photographs were presented together with 48 specific 

locations on two cartoon maps. All photographs can be assigned into one of the four categories, 

including animal, human, scene (e.g., train station), and object (e.g., pen and notebooks). 

Therefore, objective memory performance could be assessed within the scanner by instructing 

participants to indicate the picture’s category when cued by the map location. During this study 

phase, each location-picture association was presented twice, and the learning was confirmed 
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by two typing tests outside the scanner. During the typing tests, participants were required to 

describe the photograph associated with the memory cue in one or two sentences. Immediately 

after the study phase (Day1), 88.01% of the associated pictures were described correctly (SD= 

10.87%; range from 52% to 100%). 

On Day2, participants first performed the second typing test, and still recalled 82.15% of 

all associations (SD = 13.87%; range from 50% to 100%). Then, they performed the Think/

No-Think (TNT) task, and final memory test insider the scanner. We used the TNT task with 

trial-by-trial performance rating to monitor the retrieval or suppression of each trial. Compared 

to the original TNT task (Michael C Anderson, 2004), the additional self-report did not affect 

the underlying memory suppression process and also was used in a neuroimaging experiment 

before (B. J. Levy & Anderson, 2012). Forty-eight picture-location associations were divided into 

three conditions (i.e., “think or retrieval,” “no-think or suppression,” and “baseline or control” 

condition) in a counterbalanced way, therefore, for each association, the possibility of belonging 

to one of the three conditions is equal. During the retrieval condition, locations were highlighted 

with the GREEN frame for 3s, and participants were instructed to recall the associated picture 

quickly and actively and to keep it in mind until the map disappeared from the screen. By 

contrast, during the suppression condition, locations were highlighted with the RED frame for 

3s, and our instruction for participants was to prevent the potential memory retrieval and try to 

keep an empty mind. We gave additional instructions for the suppression condition: “when you 

see a location, highlighted with a RED frame, you should NOT think about the associated picture. 

Instead, you should try to keep an empty mind during this stage. It is a difficult task, and it is 

totally fine that sometimes you still think about the associated picture. But please do NOT close 

your eyes, focus on something outside the screen, or think about something else in your life. 

These strategies, although useful, could negatively affect the brain activity that we are interested 

in ……”. After each trial, participants had a maximum 3s to press the button on the response 

box to indicate whether and how often the associated picture entered their mind during Think 

or No-Think trials. Specifically, they rated their experience from 1-4 representing from No Recall 

(i.e., Never) to Always Recall. Responses during Think trials were used as retrieval frequency 

ratings, while responses during No-Think trials were regarded as intrusion frequency ratings. 

Associations which belong to the control condition were not presented during this phase. The 

TNT task included five functional runs, with 32 retrieval trials and 32 suppression trials per run. 

All “retrieval” or “suppression” associations were presented twice within one run, but not next to 

each other. Therefore, they were presented ten times during the entire TNT task. Between each 

trial, fixation was presented for 1-4s (mean=2s, exponential model) as the inter-trial intervals 

(ITI). 
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To investigate the task switching within the TNT task, for each run of each participant, we 

predefined the sequence of task demand to form “blocks” of memory retrieval or suppression with 

the length range from 1 trial to 4 trials (mean=1.9 trials, std=1.01 trials, P one-trial block=46.875%, P 

two-trials block=25%, P three-trials block=18.75%, P four-trials block=9.375%). In this sequence, the task demand 

of the current trial can be the same as the previous trial (“non-switch” trial) or differ from the 

previous trial (“switch” trial). Within one run of a total of 64 trials, 31 trials were “non-switch” trials, 

32 trials were “switch” trials, and the first trial cannot be labeled as “non-switch” trials or “switch” 

trials because it has no predecessor. The “non-switch” trials and “switch” trials both accounted 

for around 50% of the “retrieval” and “suppression” trials. After determining the sequence of 

task demand, specific location-picture associations from retrieval or suppression condition were 

randomly selected for each trial. 

After the TNT task, a final memory test was performed by participants within the scanner to 

evaluate the effect of different modulations on memory. All 48 memory cues (i.e., locations) 

were presented again with the duration of 4s by highlighting a certain part of the map with a 

BLUE frame. Participants were instructed to recall the associated picture as vividly as possible 

during the presentation and then give the responses on two multiple-choice questions within 7s 

(3.5s for each question). The first one is the measure of subjective memory: “how confident are 

you about the retrieval?”. Participants had to rate from 1 to 4 representing “Cannot recall, low 

confident, middle confident and high confident” separately. The second one is the measure of 

objective memory: “Please indicate the category of the picture you were recalling.” They needed 

to choose from four categories (i.e., Animal, Human, Scene, and Object). It is notable that we 

only analyzed the behavioral data from this within-scanner memory test; the neural activity during 

this test is not the focus of this study.

Behavioral data analysis 

Behavioral results of this project were comprehensively reported in another study of our lab with 

the focus on the final memory test (W. Liu, Kohn, et al., 2020). No results of tasks witching (i.e., 

switch costs) were reported in that study, and task switching is the central scientific question 

of this study. First, we analyzed the behavioral performance during the TNT task. Trial-by-trial 

performance reports from each participant were used to calculate the percentage of successful 

recall chosen across 160 retrieval trials and successful suppression across 160 suppression 

trials. Following previous studies (B. J. Levy & Anderson, 2012; W. Liu, Kohn, et al., 2020), 

performance reports from suppression trials were used to quantify individual differences 

in memory suppression efficiency (“intrusion slope score”). To account for the individual 

differences in memory performance before the TNT, we restricted the analysis of suppression 

into the associations for which participants can still remember during the second typing test 

(“remembered associations”). We used linear regression to model the relationship between 
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intrusion frequency ratings of “remembered associations” and the number of repetitions of 

suppression at the individual level. Participants with more negative slope scores are better at 

downregulating memory intrusions than those with less negative slope scores. Furthermore, we 

labeled each trial as the “non-switch” trial or “switch” trial based on whether the task demand of 

the current trial is the same as the previous trial. Trial-by-trial performance between “switch” and 

“non-switch” trials during retrieval or suppression was compared using paired t-tests.

We also quantified the individual differences in suppression-induced forgetting effect based 

on two types of participants’ performance (i.e., recall accuracy and confidence rating) during 

the final memory test. For each participant, recall accuracy (objective memory measure) and 

confidence rating (subjective memory measure) were calculated for No-Think associations 

and control associations separately. Then objective and subjective suppression scores were 

computed separately by subtracting the accuracy and confidence of No-Think associations 

from the control associations. The more negative a suppression score is, the stronger the 

suppression-induced forgetting effect is. The memory suppression score was used to correlate 

with the “intrusion slope score” and transition of neural states during the TNT. 

MRI data acquisition and preprocessing

We used a 3.0 T Siemens PrismaFit scanner (Siemens Medical, Erlangen, Germany) and a 

32 channel head coil system at the Donders Institute, Centre for Cognitive Neuroimaging in 

Nijmegen, the Netherlands to acquire MRI data. For each participant, MRI data were acquired on 

two MRI sessions (around 1 hour for each session) with 24 hours’ interval. In this study, we only 

used the data from the day2 session. Specifically, we acquired a 3D magnetization-prepared 

rapid gradient echo (MPRAGE) anatomical T1-weighted scan for the registration purpose with 

the following parameters: 1 mm isotropic, TE = 3.03 ms, TR = 2300 ms, flip angle = 8 deg, FOV 

= 256 × 256 × 256 mm. All functional runs were acquired with Echo-planar imaging (EPI)-based 

multi-band sequence (acceleration factor=4) with the following parameters: 68 slices (multi-slice 

mode, interleaved), voxel size 2 mm isotropic, TR = 1500 ms, TE = 39 ms, flip angle =75 deg, 

FOV = 210 × 210 × 210 mm. In addition, to correct for distortions, magnitude and phase 

images were also collected (voxel size of 2 × 2 × 2 mm, TR = 1,020 ms, TE = 12 ms, flip angle 

= 90 deg).

We used the FEAT (FMRI Expert Analysis Tool) Version 6.00, part of FSL (FMRIB’s Software 

Library, www.fmrib.ox.ac.uk/fsl) (Jenkinson et al., 2012) together with Automatic Removal of 

Motion Artifacts (ICA-AROMA) (Pruim et al., 2015) to perform our preprocessing. This pipeline 

was based on procedures suggested by Mumford and colleagues (http://mumfordbrainstats.

tumblr.com) and the article that introduced the ICA-AROMA (Pruim et al., 2015). Specifically, 

we first removed the first four volumes of each run from the 4D sequences for the stabilization 
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of the scanner and then applied the following pre-statistics processing: (1) motion correction 

using MCFLIRT (Jenkinson et al., 2002); (2) field inhomogeneities were corrected using B0 

Unwarping in FEAT; (3) non-brain removal using BET (S. M. Smith, 2002); (4) grand-mean 

intensity normalization of the entire 4D dataset by a single multiplicative factor; (5) spatial 

smoothing (6mm kernel). ICA-AROMA was used to further remove motion-related spurious 

noise. We chose to conduct “non-aggressive denoising” and applied highpass temporal filtering 

(Gaussian-weighted least-squares straight-line fitting with sigma=50.0s) before the following 

analyses. 

All of the mentioned preprocessing steps were performed in native space. We used the following 

steps to perform the registration between native space, participant’s high-resolution T1 space, and 

standard space. Firstly, we used the Boundary Based Registration (BBR) (Greve & Fischl, 2009) 

to register functional data to the participant’s high-resolution structural image. Next, registration 

of high resolution structural to standard space was carried out using FLIRT (Jenkinson et al., 

2002; Jenkinson & Smith, 2001) and was then further refined using FNIRT nonlinear registration 

(Andersson et al., 2007). Resulting parameters were used to align processed functional images 

from native-space to standard space for the following signal extraction. 

Univariate General Linear Model (GLM) analyses

We ran the voxel-wise GLM analyses of the TNT task to identify brain regions that are more 

active during memory suppression compared to memory retrieval (i.e., No-Think VS Think). All 

time-series statistical analysis was carried out using FILM with local autocorrelation correction 

(Woolrich et al., 2001) using FEAT. In total, three regressors were included in the model. We 

modeled the presentation of memory cues (locations) as two kinds of regressors (duration=4s)

(i.e., suppression trials and retrieval trials). To account for the effect of unsuccessful memory 

retrieval, we separately modeled the location-picture associations, which participants cannot 

recall before the TNT as a separate regressor. All the trials were convolved double gamma 

hemodynamic response function (HRF) within the FSL.

We conducted the two contrasts-of-interest (i.e., No-Think VS Think and Think VS No-Think) first 

at the native space and then aligned resulting statistical maps to MNI space using the parameters 

from the registration. These aligned maps were first used for participant-level averaging across 

five TNT runs, and then the group-level analyses. The group-level statistical map was corrected 

for multiple comparisons using default cluster-level correction within FEAT (voxelwise Z>3.1, 

cluster-level p < .05 FWER corrected).
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Networks-of-interest identification

To identify our networks-of-interest (i.e., inhibitory control network and memory retrieval network), 

we performed several term-based meta-analyses using the Neurosynth (https://neurosynth.

org/) (Yarkoni et al., 2011). “Inhibitory control” and “memory retrieval” were used as terms 

separately to search for all studies in the Neurosynth database whose abstracts include the 

input term at least once. Then, all identified studies were combined separately for each term 

to generate the corresponding statistical map. We used uniformity test maps in our study. This 

method tested whether the proportion of studies that report activation at a given voxel differs 

from the rate that would be expected if activations were uniformly distributed throughout the 

grey matter. Voxel-wise Z-score from the one-way ANOVA testing was saved in a statistical map. 

Each map was thresholded to correct for multiple comparisons using a false discovery rate 

(FDR)(p<0.01). It is notable that due to the continuous update of the Neurosynth database, 

the number of studies included in the analyses could be slightly different for each search, the 

maps we used can be found in our Neurovalut repository (https://identifiers.org/neurovault.

collection:7731). Similar network identification was also performed using BrainMap (Angela R 

Laird et al., 2005) as a confirmation. The two methods of meta-analysis yielded highly similar 

maps of network-of-interests (Figure S3.9), and we used the maps generated by the Neurosynth 

in our main text.

We used the thresholded (pFDR<0.01) spatial maps of “inhibitory control” and “memory retrieval” 

to general three masks of networks-of-interest. The areas which belong to both the “inhibitory 

control” and “memory retrieval” masks were labeled as overlap regions, the areas which only 

belong to the “inhibitory control” mask were labeled as control-related regions, and the areas 

which only belong to the “memory retrieval” masks were labeled as memory-related regions. 

Brain parcels for the extraction of time series

We combined a parcellation of cerebral regions (N=300) (Schaefer et al., 2018) and all subcortical 

regions (N=14) from the probabilistic Harvard-Oxford Subcortical Structural Atlas (Desikan et 

al., 2006) as a whole-brain parcellation. The parcellation of cerebral regions was based on a 

gradient-weighted Markov Random Field (gwMRF) model, which integrated local gradient and 

global similarity approaches (Schaefer et al., 2018). Based on both task fMRI and resting-state 

fMRI acquired from 1489 participants, parcels with functional and connectional homogeneity 

within the cerebral cortex were generated. Each parcel is one of the seven large-scale functional 

brain networks, including Visual, Somatomotor, Dorsal Attention, Ventral Attention, Limbic, 

Frontoparietal, Default network (Yeo et al., 2011). Subcortical regions included bilateral thalamus, 

caudate, putamen, globus pallidus, hippocampus, amygdala, and ventral striatum. Details of 

each parcel (e.g., name, coordinates, hemisphere) within the whole brain parcellation can be 

found in our OSF folder (https://osf.io/cq96h/). 
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For each of the 314 parcels of the whole-brain parcellation, we compared it with the mask of 

overlap regions, control-related regions, and memory-related regions and identified the mask in 

which the parcel shared the highest percentage of common voxels. The parcel was assigned to 

that category if the highest percentage is higher than 10%. If the highest percentage of common 

voxels is lower than 10%, the parcel was not assigned to any category. After this procedure, 

110 out of the 314 parcels were assigned to one of the categories. Specifically, 71 parcels were 

considered as memory-related regions, 29 parcels were categorized as control-related regions, 

and 10 parcels were labeled as overlap regions in our following analysis.

Extraction of time series from parcels

We additionally removed nuisance time series (cerebrospinal fluid (CSF) signals, white matter 

signals, motion, and event-related activity) using a method based on a projection on the orthogonal 

of the signal space (Friston et al., 1994; Lindquist et al., 2019). We generated confounding time 

series (CSF, white matter, the six rigid-body motion parameters (three translations and three 

rotations), and framewise displacement (FD)) for each run of each participant. Event-related 

activity time series were estimated by a finite impulse response (FIR) function. A recent study has 

shown that removal of event-related activity based on FIR modeling is an important step for the 

preprocessing of time series during a task (Cole et al., 2019). The signal from each parcel was 

extracted and z-scored, and all nuisance time series were removed simultaneously using the 

nilearn.signal.clean function. All cleaned time series were shifted 3 TRs (4.5 s) to account for the 

HRF delay and then aligned with the task demand (i.e., retrieval or suppression) at that moment.

The transition of neural states analysis

First, we characterized the transition of neural states at the group level. Extracted time series 

from each run of each participant were split according to the task instruction (i.e., memory 

retrieval or memory suppression) and concatenated. Second, two kinds of time series were 

further concatenated across five TNT runs within that participant (except for one participant, 

only four complete TNT runs were included). Third, time series were concatenated across all 

participants. Fourth, two time-series were averaged across all time points to represent mean 

activity intensity for that parcel during retrieval or suppression. 

To estimate the relative dominance of each parcel during two neural states (i.e., Think and 

No-Think), we ranked the mean activity intensity of each parcel (the highest activity was ranked 

first). We then calculated the changes in ranks when the task switched from Think to No-Think 

by subtracting the rank during Think from the rank during No-Think. The same analyses were 

conducted with raw signal intensity and Z-values. Related results can be found in the Supplemental 

Materials. The negative change suggested an increase in relative dominance, while the positive 

change represented the opposite. We calculated two neural indexes (“state transition index” and 
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“state transition index Version 2 (V2)”) to quantify the transition of neural states at the individual 

level and associate this individual difference with the subsequent suppression-induced forgetting 

effect. The state transition index was calculated by adding up the averaged relative decreases in 

rank values all memory-related regions, and the averaged relative increase in rank values of all 

control-related regions. The calculation and results of “state transition index Version 2 (V2)” can 

be found in the Supplemental Material. It is notable that although transition index and transition 

index V2 were calculated using different methods, they were based on the same set of data. 

Therefore, the data analyses of index V2 should not be regarded as independent analysis. 

These two state transition indices were used to correlate with the objective suppression score 

and subjective suppression score calculated based on behavioral performance during the final 

memory test after TNT.

Neural states decoding analysis

Before the decoding analysis, we generated the labels of task demand for each time point within 

the trial based on its instruction (i.e., Think or No-Think). For example, if the trial is a Think trial, time 

points started from the presentation of memory cues of this trial to the presentation of memory 

cues of the next trial were labeled as “Think.” We performed the time-resolved multivariate 

decoding analysis based on the brain activity of all 114 ROIs and corresponding labels of task 

demand during each time point. This decoding analysis allowed us to generate the predicted 

label of task demand for each time point, thus revealing the fast dynamics of the neural state 

transition induced by the switch of task demand. Specifically, decoding analysis via the Support 

Vector Classification (SVC), the C-Support Vector Machine within the scikit-learn package 

(https://scikit-learn.org/stable/). We used default parameters of the function (regularization 

(C)=1, radial basis function kernel with degree=3). The classification of neural states was 

performed separately for each time point using a leave-one-run-out cross-validation approach 

within each participant. This procedure resulted in a decoded task demand for each time point of 

each participant. These predictions were evaluated by comparing these decoded task demands 

with actual task demand. To separate all types of correct and incorrect classification for the 

following analyses, we generated the confusion matrix for each participant. This confusion matrix 

contained the percentage of all four situations based on the task demand and if the prediction 

matches the task instruction (i.e., Think-Correct classification, Think- Incorrect classification, 

No-Think- Correct classification, and No-Think-Incorrect classification). We extracted all SVC 

discriminating weights assigned to the features during the participant-specific decoding and 

averaged them across all participants to generate the neural state-predictive pattern. The brain 

parcels with higher absolute values contributed more to decoding models.

To test for possible differences in neural representations of task demand induced by the 

task-switching, we performed the described decoding analyses for switch time points and 
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non-switch time points separately. The switch time points were defined as the presentation time 

(3TRs; 4.5s) of first memory cue after the switch of task demand. The two decoding analyses 

yielded decoding accuracies for switch time points and for non-switch time points for each 

participant. We compared these two types of decoding accuracies using the paired t-test. Less 

accurate decoding was described as the evidence for the weaker representation of the current 

task demand in the literature (Loose et al., 2017; Waskom et al., 2014). Also, because we only 

have two task demands, less accurate decoding reflects the unsuccessful transition from the 

previous demand to the current demand according to the instruction. 

Next, we aimed to investigate the behavioral relevance of the mismatch (i.e., incorrect 

classification) between task demand and the underlying neural state. Because we were mainly 

interested in the switch-induced mismatch, we first restricted our analyses to these switch time 

points and then extended to the non-switch time points as an exploratory analysis. For each 

participant, we averaged the trial-by-trial behavioral performance during the TNT task based on 

whether the actual task demand matches with decoded task demands. This yielded retrieval 

performance and suppression performance for match and mismatch conditions. Paired t-tests 

were performed to examine the effect of mismatch on the performance of memory retrieval 

and memory suppression separately. The performance calculations and comparisons described 

above were repeated for non-switch time points as well.

Relationship between head motion, neural state transitions, and behaviors

To explicitly assess how head motion could potentially affect our results, we derived a 

volume-by-volume measure of head motion, framewise displacement (FD) (Power et al., 

2012), during the TNT task. FD is defined as the sum (in mm) of rotational and translational 

displacements from the current volume to the next volume. We aligned the time-series of FD with 

task structure and behaviors in a way similar to the analyses of time series of fMRI signals but did 

not consider the HRF. The following contrasts were performed to compare head motion between 

conditions: (1) difference in FD between Think trials and No-Think trials; (2) difference in FD 

between correct neural state decoding and incorrect neural state decoding; (3) difference in FD 

between the switch and non-switch condition. Correlations analyses were performed between 

individual differences in head motion between Think and No-Think trials (i.e., FDThink-FDNo-Think), 

state transition index, objective/subjective suppression score.

Data and code availability 

Custom scripts used in this study, immediate data (i.e., preprocessed single-trial activation 

patterns used for reinstatement analyses) as well as raw data were uploaded to the Donders 

Repository (https://data.donders.ru.nl/). The project was named as Tracking the involuntary 

retrieval of unwanted memory in the human brain with functional MRI in the Repository (https://
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doi.org/10.34973/5afg-7r41). Some data, such as statistical maps and brain parcels of interest 

were shared via the Neurovault Repository (https://identifiers.org/neurovault.collection:7731). 

Supplemental Material can be found in OSF ((https://osf.io/cq96h/).     

Behavioral data were analyzed by JASP (https://jasp-stats.org/). For the term-based meta-analysis 

of neuroimaging studies, we used the Neurosynth (https://neurosynth.org/), and BrainMap 

(http://www.brainmap.org/). Preprocessing of neuroimaging data was performed by FSL (https://

fsl.fmrib.ox.ac.uk/fsl/fslwiki), ICA-AROMA (https://github.com/maartenmennes/ICA-AROMA), 

and fMRIPrep (https://fmriprep.readthedocs.io/en/stable/). Python packages, including Nilearn 

(https://nilearn.github.io/), Nistats (https://nistats.github.io/), Pandas (https://pandas.pydata.

org/), and Nunpy (https://numpy.org/) were used for the analyses of time series. Machine 

learning algorithms were based on scikit-learn (https://scikit-learn.org/) and implemented via 

Nilearn (https://nilearn.github.io/). Anaconda (https://www.anaconda.com/) Python 3.6 was used 

as the platform for all the programming and statistical analyses. Custom Python scripts were 

written to perform all analyses described based on the mentioned Python packages; all code is 

available from the authors upon request and will be released via our OSF repository (https://osf.

io/cq96h/) upon publication.
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The dynamic transition between neural states is associated with the flexible use of memory

Wei Liu1, Nils Kohn1, Guillén Fernández1

1. Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre,  

 The Netherlands

This file includes:

Supplementary Text

Figure S3.1-S3.9

Table S3.1-S3.3

1.  Behavioral performance during the final memory test 

During the final memory test, each memory cue was presented again, and the participant was 

instructed to rate the confidence of their memory for this association, and then classified the 

category of the associated picture. We examined the effect of memory retrieval and suppression 

during the TNT on the subsequent subjective (confidence rating) and objective (if they 

selected the correct category) memory. Three kinds of associations (i.e. retrieval association, 

suppression association, and control association) did not differ in their objective recall accuracy 
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(F [2,26] =0.524, p=0.595, ² =0.02; Figure S3.2A). Our experiment design may explain the 

lack of the main effect of modulation on objective memory at the group level: all associations 

underwent overnight consolidation, thus difficult to be modulated (W. Liu, Kohn, et al., 2020; 

Y. Liu et al., 2016). Crucially, replicating the previous study (B. J. Levy & Anderson, 2012), we 

found the suppression-induced forgetting at the individual level, and this effect was determined 

by individual differences in the efficiency of suppression during the TNT task. Specifically, 

participants who were more effective in suppressing intrusions (more negative intrusion slope 

score) during the TNT phase were the ones who show larger suppression-induced forgetting 

effects (r=0.411, p=0.03; Figure S3.2C). Next, analyzing the subjective memory, we found a 

significant effect of modulation on subjective memory (F [2,26] =5.928, p=0.005, ² =0.186; 

Figure S3.2B). Participants reported higher confidence for retrieval associations compared to 

control associations (t=3.35, p holm=0.007) and a trend towards higher confidence compared to 

suppression associations (t=2.172, p holm=0.07). Finally, we asked if modulation affected retrieval 

speed indexed by the RT during the final test. Even though we did not find a significant main 

effect of modulation (F [2,26]=2.905, p=0.06, ² =0.03; Figure S3.2D), recall of RETRIEVAL 

ASSOCIATIONS was faster compared to the recall of CONTROL ASSOCIATIONS (t(26)=-2.486, 

p=0.02, Cohen’s d=-0.47).

2. Additional analyses of Think-to-NoThink neural state transition 

To describe further the reconfiguration, we divided all ROIs into three groups (increased group, 

stable group, and decreased group) based on their relative changes in rank. When the task 

demand changed from Think to No-Think, 47.88% of the memory-related regions showed the 

top one-third decrease in relative rank values and therefore belonged to the decreased group. 

Another 39.43% of the memory-related regions did not change extensively during the transition 

(stable group), and 12.67% of the regions showed increases in their ranks (increase group). 

Control-related regions demonstrated the opposite neural changes: 75.86% of them belonged 

to the increased group, with 17.24% and 6.89% of their regions belonged to a stable group or 

decreased group separately. For overlap regions, 50% of them belonged to the increased group, 

40% of them belonged to the stable group, and only one region belonged to the decreased 

group. We further looked at the proportion of memory-related regions, control-related regions, 

and overlap regions within increased, decreased, and stable groups separately. A chi-square 

test of independence was performed to examine the relations between their functions (i.e., 

memory-related, control-related, or overlap) and which change group they belong to. The 

relation between these variables was significant (X2 =41.38, p<0.001). Control-related regions 

were more likely to be allocated to the increased group, while memory-related regions were 

more likely to be assigned to the decreased group. Specifically, among the increased group 

with a total of 36 regions (around 33.3% of all 110 ROIs analyzed), 61% of the regions were 

control-related regions (expected percentage=26.4%, p<0.001, one-side binomial test). 
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By contrast, within the decreased group, 92% of the regions were memory-related regions 

(expected percentage=64.5%, p<0.001, one-side binomial test). Taken together, we found 

that during Think condition, memory-related regions showed relatively high neural activity 

compared to control-related regions and overlap regions. When the task demand changed 

from Think to No-Think, memory-related regions showed decreases in their relative contribution, 

while control-related regions demonstrated an increase in their activity ranks. These patterns of 

changes were not only presented when we analyzed the rank of activity among ROIs (Figure 

S3.4A) but also existed when we analyzed their raw (Figure S3.4B) or Z score (Figure S3.4C) 

of activity intensity. 

3. An alternative method to quantify individual differences in neural state transitions

In the main text, we presented significant correlations between the state transition index and 

objective/subjective suppression effect (See Figure 2C and D). However, statistical tests were 

just around a significant level of p=0.05. To further validate the relationship between neural 

state transitions during the TNT and the subsequent forgetting effect, we used an alternative 

method (i.e., state transition index Version2 (V2)) to quantify individual differences in neural 

state transitions and performed the correlation again. This method is based on the additional 

analysis of the Think-to-NoThink neural state transition above. For each participant, all 110 

ROIs were divided into three groups (i.e., increased group, stable group, and decreased group) 

based on their relative changes in rank. The state transition index V2 was defined as the sum 

of the percentage of memory-related nodes within the decreased group and percentage of 

control-related nodes within the increased group. As shown in Figure S3.5 (right panels), state 

transition index V2 positively associated with the individual differences in objective suppression 

score (r=0.43, p=0.02), and tended to associate with subjective suppression score (r=0.36, 

p=0.06).
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Figure S3.1 Behavioral performance during the Think/No-Think task. (A) Percentage of the trial-by-trial 
introspective report during the Think trials. For most of the Think trials, associated pictures were successfully 
recalled (1-Pnever: mean=84.05%, SD=11.79 %). (B) Percentage of the trial-by-trial introspective report during 
the No-Think trials. During half of the No-Think trials, participants successfully suppressed the tendency to 
recall the associated pictures (Pnever: mean=50.62%, SD=25.35%).
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Figure S3.2 Behavioral performance during the final memory test. (A) There is no effect of retrieval 
or suppression on the accuracy of the categorization during the final test (p=0.595). (B) For RETRIEVAL 
ASSOCIATIONS, participants reported higher subjective confidence compared to SUPPRESSION 
ASSOCIATIONS (t(26)=2.172, pholm=0.07, Cohen’s d=0.41) , and CONTROL ASSOCIATIONS (t(26)=3.35, 
P holm=0.007, Cohen’s d=0.64). (C) Participants who are more effective in reducing suppression failures 
(more negative the Intrusion Slope Score) were the ones who show more evidence suppression-induced 
forgetting (more negative the Suppression Score). (D) For RETRIEVAL ASSOCIATIONS, participants spent 
less time during categorization compared to the CONTROL ASSOCIATIONS (t(26)=-2.486, p=0.02, Cohen’s 

�
a.u= arbitrary unit.
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Figure S3.3 Brain networks defined by the Neurosynth-based meta-analyses. (A) Memory retrieval 
network generated using the term “memory retrieval.” (B) Inhibitory control network generated used the term 
“inhibitory control.” (C) Voxels that belong to both memory retrieval network and inhibitory control network. 
(D) Switching network generated used the term “task switching.” All raw statistical maps can be found in our 
Neurovault repository (https://identifiers.org/neurovault.collection:7731).   
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Figure S3.4. Neural state reconfiguration during the Think-to-NoThink transition. (A) Visualized based 
on the rank of activity intensity among ROIs. (B) Visualized based on raw activity intensities of ROIs. (C) 
Visualized based on the Z score of activity intensity of ROIs.

Figure S3.5 Individual differences in two kinds of state transition index are correlated with both 
objective and subjective suppression scores. The results of the state transition index (i.e., left two panels) 
were presented in the main text. The results of state transition index V2 (i.e., right two panels) were presented 
in the Supplemental Text Section3. 
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Figure S3.6 Neural state-predictive pattern and overlapping network share similar spatial patterns. (A) 
The contribution of different brain regions during the decoding. The map was visualized using an arbitrary 
threshold of 0.10. Higher absolute values of voxelwise statistical results represent a larger contribution 
during decoding. (B) Voxels that belong to both memory retrieval network and inhibitory control network 
(Neurosynth-based).

Figure S3.7 Behavioral consequences of the mismatch between neural state and current task demand. 
When the decoded neural state did not match with the task demand (i.e., Think decoded as No-Think), 
participants reported worse memory retrieval performance during Think trials. When the neural decoder 
misclassified No-Think moments as Think, participants reported more memory intrusions during No-Think 
trials. These two effects can be detected during the switching period (i.e., left panel), non-switching period 
(i.e., middle panel), and all time points within the entire Think/No-Think task (i.e., right panel)



 | 101

The dynamic transition between neural states is associated with the flexible use of memory

3

                 
Figure S3.8 Schematic of the experiment design. (A) Timeline of the two-day experimental procedures. 
Red lines below the timeline indicate the tasks in the MRI scanner. (B) During the familiarization phase, all of 
the pictures of the to-be-remembered associations were randomly presented four times for the familiarization 
and estimation of picture-specific activation patterns. To keep participants focused, on each trial, they were 
instructed to categorize the picture shown as an animal, human, location, or object. (C) Study phase. 
Participants were trained to associate memory cues with presented pictures. (D) Modulation phase. After 24 
hours, we used the Think/No-Think paradigm to modulate consolidated associative memories. Participants 
were instructed to actively retrieve associated pictures in mind (“retrieval”) or suppress the tendency to recall 
them (“suppression”) according to the colors of the frames (GREEN: retrieval; RED: suppression) around 
locations. (E) Final memory test phase. Participants performed the final memory test after the modulation. 
For each of the 48 location-picture associations, locations were presented again, and participants were 
instructed to report the memory confidence and categorize the picture that came to mind.
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Figure S3.9 Comparison between brain networks generated by the Neurosynth and Brainmap. (A) 
Memory retrieval network. The network generated by the Neurosynth using the term “memory retrieval” (left 
panel). The network generated by the Brainmap based on activation-based mapping in healthy participants 
who perform the paradigm of “episodic recall” (right panel). (B) Inhibitory control network. The network 
generated by the Neurosynth using the term “inhibitory control” (left panel). The network generated by the 
Brainmap based on activation-based mapping in healthy participants who perform the paradigm of “go/
no-go” (right panel)

Table S3.1 Significant activated clusters during No-Think trials compared to Think trials

Contrast Brain region Hemisphere MNI coordinates Cluster size
Peak
voxel Value

No-Think
>
Think

IFG/Insula L -38 22 8 920 5.5

IFG/Insula R 46 18 12 2397 5.5

DLPFC R 22 46 24 1681 4.5

DLPFC L -22 44 18 160 4.5

IPL R 56 -42  34 1305 5.5

IPL L -58 -54  42 226 4.4

Thalamus R 16 -22 2 677 6.6

Precuneus R/L 14 -60 56 NA 5.4

Postcentral gyrus R 45 -20 55 NA 7.4

SMA R/L 8 0 53 NA 5.5

dACC R/L 8 20 37 NA 4.4

IFG=Inferior Frontal Gyrus; DLPFC=Dorsolateral Prefrontal Cortex; IPL=Inferior Parietal Lobule; 
SMA=Supplementary Motor Area; dACC= dorsal Anterior Cingulate Cortex
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Table S3.2 Significant activated clusters during Think trials compared to No-Think trials

Contrast Brain region Hemisphere
MNI 
coordinates

Cluster size
Peak 
voxelValue

Think
>
No-Think

mPFC R/L 0 -44 -10 6573 4.03

Insula L -42 -16 18 7.49

ITG L -42 -42 -10 178 4.54

STG/IPL/Precunues R 54 -30 10
2925

5.36

Hippocampus R 30 -40 4 3.74

Precunues/PCC/
SMA

L -4 -40 34

6220

4.85

Precentral/
Postcentral Gyrus

L -40 -36 60 7.32

Posterior Cerebellum R 22 -60 -46 169 5.30

Anterior Cerebellum R 16 -54 -20 1065 7.28

mPFC= medial Prefrontal Cortex; ITG= Inferior Temporal Gyrus; STG= Superior Temporal Gyrus; PCC= 
Posterior Cingulate Cortex; SMA= Supplementary Motor Area

Table S3.3 Top 10 brain parcels with high classification weights during the neural state prediction

Anatomical Label X Y Z Hemisphere Network Classification Weight

SPL -34 -48 46 LH DorsAttn 0.189181458

LOC -16 -72 54 LH DorsAttn -0.358755616

Middle frontal gyrus -32 -4 52 LH DorsAttn 0.151391694

dACC -6 10 40 LH SalVentAttn 0.169217997

IPL -34 -66 48 LH Cont 0.1866069

IPL -44 -42 46 LH Cont 0.255550192

Middle frontal gyrus -42 12 34 LH Cont -0.229290806

IFG -54 20 12 LH Default -0.179694589

SPL 16 -72 54 RH DorsAttn -0.190727893

Putamen NA NA NA RH Subcortical -0.161437796

DorsAttn=dorsal attention network; SalVentAttn=salience ventral attention network; Cont=frontal parietal 
control network; Default=default network; SPL=superior parietal lobule; LOC= lateral occipital cortex; 
dACC= dorsal Anterior Cingulate Cortex; IPL= Inferior Parietal Lobule; IFG=Inferior Frontal Gyrus
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Abstract

Memories are not stored as static engrams, but as dynamic representations affected by 

processes occurring after initial encoding. Previous studies revealed changes in activity 

and mnemonic representations in visual processing areas, parietal lobe, and hippocampus 

underlying repeated retrieval and suppression. However, these neural changes are usually 

induced by memory modulation immediately after memory formation. Here, we investigated 

27 healthy participants with a two-day functional Magnetic Resonance Imaging study design 

to probe how established memories are dynamically modulated by retrieval and suppression 

24 hours after learning. Behaviorally, we demonstrated that established memories can still be 

strengthened by repeated retrieval. By contrast, repeated suppression had a modest negative 

effect, and suppression-induced forgetting was associated with individual suppression efficacy. 

Neurally, we demonstrated item-specific pattern reinstatements in visual processing areas, 

parietal lobe, and hippocampus. Then, we showed that repeated retrieval reduced activity 

amplitude in the ventral visual cortex and hippocampus, but enhanced the distinctiveness of 

activity patterns in the ventral visual cortex and parietal lobe. Critically, reduced activity was 

associated with enhanced representation of idiosyncratic memory traces in the ventral visual 

cortex and precuneus. In contrast, repeated memory suppression was associated with reduced 

lateral prefrontal activity, but relative intact mnemonic representations. Our results replicated 

most of the neural changes induced by memory retrieval and suppression immediately after 

learning and extended those findings to established memories after initial consolidation. Active 

retrieval seems to promote episode-unique mnemonic representations in the neocortex after 

initial encoding but also consolidation. 

Keywords: episodic memory, memory retrieval, memory suppression, consolidation, pattern 

reinstatement
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Introduction

Historically, memories were seen as more or less stable traces or engrams. After initial formation, 

memory traces are affected by consolidation leading to stabilization and weakening, leading to 

forgetting (Ebbinghaus, 1885; Lashley, 1950; Müller & Pilzecker, 1900). However, contemporary 

research has provided ample evidence showing that memories continue to be dynamically 

adapted after initial encoding and, thus, can be modified by external factors throughout their 

existence. For instance, retrieval practice can reinforce memory traces (Karpicke & Roediger, 

2008), promote meaningful learning (Karpicke & Blunt, 2011), and protect memory retrieval 

against acute stress (A. M. Smith et al., 2016). In contrast, retrieval suppression can prevent 

unwanted memories to be retrieved (Michael C Anderson & Green, 2001), and reduce their 

emotional impact (Gagnepain et al., 2017). 

Previous neuroimaging studies identified several neural changes that could explain the 

retrieval-mediated memory enhancement: after repeated retrieval, several studies reported 

decreased or increased univariate activity in frontal, parietal areas, and temporal gyrus 

(Eriksson et al., 2011; Gagnepain et al., 2014; Kuhl et al., 2010; Nelson, Arnold, Gilmore, & 

Mcdermott, 2013; G. van den Broek et al., 2016; G. S. E. van den Broek et al., 2013; M. Wimber 

et al., 2011; Maria Wimber et al., 2008; Wing et al., 2013; Wirebring et al., 2015). More direct 

evidence for retrieval-induced changes in mnemonic representations came from studies that 

applied multivariate pattern analysis. Karlsson Wirebring and colleagues reported that less 

similar activity patterns in the posterior parietal region across retrieval trials are associated 

with subsequent better memory (Wirebring et al., 2015). Wimber and colleagues founded that 

targeted activity patterns are increasingly reinstated over repeated retrieval in visual areas during 

memory competition (Maria Wimber et al., 2015). Most recently, Ferreira and colleagues reported 

retrieval-induced generalized and episode-unique representations in parietal areas (Ferreira et 

al., 2019). Ye and colleagues demonstrated that retrieval practice facilitated the rapid formation 

of memory representations in the medial prefrontal cortex (mPFC) (Ye et al., 2020). Regarding 

neural changes underlying suppression-induced forgetting, compelling evidence suggested the 

role of prefrontal top-down regulation of the hippocampus during suppression (M. C. Anderson, 

2004; Michael C Anderson & Hanslmayr, 2014). However, only a few studies investigated neural 

changes in activity and/or activity patterns across repeated suppression. Depue and colleagues 

showed the time-specific involvement of inferior frontal gyrus and medial frontal gyrus during the 

suppression of emotional memory (Brendan E Depue et al., 2007). Gagnepain and colleagues 

demonstrated the effect of suppression on visual memories may be achieved by targeted cortical 

inhibition of visual-related activity and activity patterns (Gagnepain et al., 2014). 
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Although these studies shed light upon neural changes underlying memory retrieval and 

suppression, all of them were based on memory modulation (i.e., retrieval and suppression) 

immediately after initial memory formation, except for one study that included repeated retrieval 

on two consecutive days (Ferreira et al., 2019). How the modulation of memory traces after 

initial consolidation is reflected in the neural activity and mnemonic representation, as assessed 

by activation patterns during subsequent retrieval is currently not well understood. Studying 

the neural changes underlying the modulation of initially consolidated memories can provide 

complementary and critical understandings of the dynamic nature of human memory. Because 

newly acquired memories are usually more labile compared to consolidated ones (Frankland 

& Bontempi, 2005) and mnemonic representations shift from the hippocampus to distributed 

neocortical regions following overnight sleep (Takashima et al., 2006, 2009), the effectiveness of 

memory modulation could be decreased, and the underlying neural changes could be different. 

For example, a study showed that suppression of aversive memories after overnight consolidation 

is harder, and involved reconfigured neural pathways during suppression (Y. Liu et al., 2016). 

Also, modulation of consolidated memories may provide a clear focus on the changes of 

long-term memory representation, because previously reported immediate effects (i.e., changes 

in activity amplitude and activity patterns) can still be caused by short-term changes in related 

processes such as executive control or attention. Here, we used a two-day functional Magnetic 

Resonance Imaging (fMRI) design to characterize neural dynamics of initially consolidated 

memory. After overnight consolidation, memories were in one condition reinforced by repeated 

memory retrieval and in the other, weakened by repeated memory suppression. We analyzed 

the neuroimaging data from both the modulation and the subsequent memory retrieval phase to 

examine neural changes at the moment when specific memory was modulated and in the final 

memory test in which the aftereffects of the modulation can be measured. 

Based on neural findings of memory reinstatement (Janice Chen et al., 2017; Kosslyn et al., 1997; 

Kuhl et al., 2010; S.-H. Lee et al., 2019; O’Craven & Kanwisher, 2000; Polyn et al., 2005; Shohamy 

& Wagner, 2008; Wheeler et al., 2000; Maria Wimber et al., 2015; Xue, 2018), we used both the 

levels of activity amplitude (i.e., univariate analysis) and activation patterns (i.e., multivariate 

pattern analysis) of visual area, parietal lobe, and hippocampus to characterize memory traces 

during memory retrieval and further examined the linear relationship between the two neural 

changes within the same regions. Furthermore, we adopted a novel design to disentangle 

perception-related neural activities associated with memory cues presented at the test and 

retrieval-related neural reactivation associated with reactivated mental images. One method to 

separate these two processes is to use two perceptual modalities (e.g., sounds as memory cues 

and pictures as information to be retrieved)(Bosch et al., 2014). Here, we used highly similar 

visual memory cues across different memory associations. Thus, item-specific neural patterns 

(at least in visual areas) during retrieval more likely to be caused by retrieval-related memory 

reactivation instead of visual processing of memory cues. 
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To sum up, our primary goal is to reveal if two behavioral techniques (i.e., retrieval and suppression) 

can modulate initial consolidated associative memories, and if such modulation results in 

altered activity and/or activity patterns detected by fMRI. We first investigated the possibility that 

associative memories can still be modulated after 24 hours. Behaviorally, we asked whether 

repeated retrieval and memory suppression would oppositely strengthen or weaken original 

memory traces. Next, using fMRI, we examined whether retrieval and suppression would modify 

neural measures of memory reactivation (i.e., activity amplitude and activity pattern similarity) 

oppositely.

Materials and Methods

Participants

Thirty-two right-handed, healthy young participants aged 18-35 years who were recruited from 

the Radboud Research Participation System finished two sessions of our experiment. They all 

had corrected-to-normal or normal vision and reported no history of psychiatric or neurological 

disease. All of them are native Dutch speakers. Two participants were excluded from further 

analyses due to memory performance at the chance level. Three additional participants were 

excluded because of excessive head motion during scanning. We used the motion outlier 

detection program within the FSL (i.e., FSLMotionOutliers) to detect timepoints with large motion 

(threshold=0.9). There are at least 20 spikes detected in these excluded participants with the 

largest displacement ranging from 2.6 to 4.3, while participants included had less than ten 

spikes. Neuroimaging data of one additional participant was partly used: she was excluded 

from the analysis of the modulation phase (Think/No-Think paradigm) due to head motion (in 

total 53 spike, largest displacement=5.7) only during this task, while his/her data during the 

other tasks were included in the analyses. Thus, data of 27 participants (16 females, age=19-30, 

mean=23.41, SD=3.30) were included in the analyses of the final test phase, and data of 26 

participants (15 females, age=19-30, mean=23.51, SD=3.30) were included in the analyses of 

the modulation phase. All participants scored within normal levels when applying Dutch-versions 

of the Beck Depression Inventory (BDI) (Roelofs et al., 2013) and the State-Trait Anxiety Inventory 

(STAI) (van der Bij et al., 2003). Furthermore, because of the two-session design (24 h’ interval), 

we used an adapted Dutch version of the Pittsburgh sleep quality index (PSQI) (Buysse et al., 

1989) to assess the quality of sleep between the two scanning sessions. Questions for last night’s 

sleep were added to the original version. We compared participants’ sleep quality/duration for 

the last night and the average across the previous four weeks. No participants reported abnormal 

sleep-related behaviors during the night between two fMRI sessions (i.e., more than two hours 

of differences in sleep time, time to go to bed, or time to wake up between the last night and 

the previous four weeks). The experiment was approved by, and conducted in accordance with 
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requirements of the local ethics committee (Commissie Mensgebonden Onderzoek region 

Arnhem-Nijmegen, The Netherlands) and the declaration of Helsinki, including the requirement 

of written informed consent from each participant before the beginning of the experiment.

Materials

Locations and maps

We used 48 distinctive locations (e.g., buildings, bridges) drawn on two cartoon maps as 

memory cues. The maps are not corresponding to the layout of any real city in the world, and 

participants have never been exposed to the maps before the experiment. During the task, the 

whole map was presented with sequentially highlighting specific locations by colored frames as 

memory cues. By doing this, we kept visual processes during memory tasks largely consistent. 

Pictures

Forty-eight pictures (24 neutral and 24 negative pictures) from the International Affective Picture 

System (IAPS) (Lang et al., 1997) were used in this study, and these pictures can be categorized 

into one of four groups: animal (e.g., cat), human (e.g., reading girl), object (e.g., clock) or scene 

(e.g., train station). Category information was used for the following memory-based category 

judgment test. All images were converted to the same size and resolution for the experiment.  

Picture-location associations

Each picture was paired with one of the 48 map locations to form specific picture-location 

associations. We (W.L and J.V) carefully screened all the associations to prevent the explicit 

semantic relationship between picture and location (e.g., lighter at the- fire department). All 48 

picture-location associations were divided into three groups for different types of modulation 

(See Modulation Phase). For each map, 24 locations were paired 6 pictures from each category. 

One-third of associations (8 associations; 2 pictures from each category) on that map were 

retrieval associations (i.e. “think” associations), one-third of associations were suppression 

associations  (i.e., “no-think” associations), and remaining one-third are control associations.

Experiment design

Overview of the design

This study is a two-session fMRI experiment, with the 24 hours interval between two sessions 

(Figure 4.1A). Day1 session consists of the familiarization phase (Figure 4.1B), the study phase 

(Figure 4.1C), and the immediate typing test. The Day2 session consists of the second typing 

test, the modulation phase (Figure 4.1D), and the final memory test (Figure 4.1E). Among 

these phases, the familiarization, modulation, and the final memory test phase were performed 

in the scanner, while the study phase and two typing tests were performed in the behavioral 

lab. The trial structure and timing are depicted in Figure S4.1. Stimuli were presented while 
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participants were scanned projecting on to a translucent screen (diameter=598mm; maximum 

projection size=369 × 277 mm) mounted at the end of the scanner’s bore and visible via a 

mirror mounted at the head coil and during behavioral sessions using a 24-inch LED monitor. 

During the MRI scanning, the distance between the visual surface mirror and the projection 

screen was around 85.5cm. Moreover, to keep the visual presentation as consistent as possible, 

we set the resolution as at 1280x1024 for both set-ups.

Familiarization phase

To obtain the picture-specific brain responses to all 48 pictures, we instructed participants to 

perform the familiarization phase while being scanned (Figure 4.1B). The second purpose of 

the task is to let participants become familiar with the pictures to be associated with locations 

later. Each picture (resolution=400 x 400) was shown four times at the center of the screen 

with a visual angle of 7 degrees for 3s and was distributed over in total of four functional runs. 

The order of the presentation was pseudorandom and pre-generated by self-programmed 

Python code. The dependencies between the orders of different runs were minimized to prevent 

potential sequence-based memory encoding. To keep participants focused during the task, we 

instructed them to categorize the presented picture via the multiple-choice question with four 

options (animal, human, object, and scene). We used an exponential inter-trial intervals (ITI) 

model (mean=2s, minimum=1s, maximum=4s) to generate the ITIs between trials. Participants’ 

responses were recorded by an MRI-compatible response box.

Study phase

Each picture-location association was presented twice in two separate runs (Figure 4.1C). 

During each study trial, the entire map (resolution=1024 x 768) was first presented for 2.5s, 

then a BLUE frame was added to a layer on the top of the entire map to highlight one of the 48 

locations, for 3s, and finally, the picture and its associated location were presented side-by-side 

together for 6s. We pre-generated a pseudorandom order of the trials to minimize the similarity 

between the orders in familiarization and the study phase.

Typing test phase

Immediately after the study phase, participants performed a typing test (day1) assessing 

picture-location association memory. Each location was presented again (4s) in an order that 

differed from the study phase, and participants had maximally 60s to describe the associated 

picture by typing its name/description on a standard keyboard. Twenty-four hours later (day2), 

participants performed the typing test again in the same behavioral lab. The procedure was 

identical to the immediate typing test, but with a different trial order. 
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Modulation phase

The modulation phase is the first task participants performed during the Day2 MRI session. 

We used the think/no-think (TNT) paradigm with trial-by-trial self-report measures to modulate 

initially consolidated memories (Figure 4.1D). The same paradigm has been used in previous 

neuroimaging studies, and the self-report does not affect the underlying memory control 

process (M. C. Anderson, 2004; B. J. Levy & Anderson, 2012). Forty-eight picture-location 

associations were divided into three conditions. One-third of the associations (16 associations) 

were assigned to the retrieval condition (“Think”), one-third of the associations were assigned 

to the suppression condition (“No-Think”), and the remaining one-third of the associations were 

assigned to the control condition. The assignment process was counterbalanced between 

participants. Therefore, at the group level, for each picture-location association, the possibility of 

belonging to one of the three modulation conditions is around 33.3%. Associations that belong to 

different conditions underwent different types of modulation during this phase. Locations which 

belong to the control condition were not presented during this phase. For a retrieval trial, the 

entire map was presented (visual angle=18 degrees) with one particular location, highlighted 

with a GREEN frame for 3s, and participants were instructed to recall the associated picture 

quickly and actively and to keep it in mind until the map disappeared from the screen. For a 

suppression trial, one location was highlighted with a RED frame for 3s, and participants were 

instructed that “when you see a location, highlighted with a RED frame, you should NOT think 

about the associated picture. Instead, you should try to keep an empty mind during this stage. It 

is a difficult task, and it is totally fine that sometimes you still think about the associated picture. 

But please do NOT close your eyes, focus on something outside the screen, or think about 

something else in your life. These strategies, although useful, could negatively affect the brain 

activity that we are interested in ……” After each retrieval or suppression trial, participants had 

up to a maximum of 3s to report their experience during the cue presentation. Specifically, they 

answered a multiple-choice question with four response options (Never, Sometimes, Often, and 

Always) by pressing the button on the response box to indicate whether the associated picture 

entered their mind during that particular trial or not and the relative frequency. 

The modulation phase consisted of five functional runs (64 trials per run). In each run, 32 

locations (half retrieval trials, and half suppression trials) were presented twice. Therefore, each 

memory cue that did not belong to the control condition was presented ten times during the 

entire modulation phase. Again, we pre-generated the presentation orders to prevent similar 

order sequences across five modulation runs. Between each trial, fixation was presented for 1-4s 

(mean=2s, exponential model) as ITI.
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The final memory test phase

After the modulation phase, participants performed the final memory test within the scanner 

(Figure 4.1E). All 48 locations (including both the retrieval/suppression associations as well as 

control associations) were highlighted one-by-one while showing the entire map again with a 

BLUE frame. During its presentation (4s), participants were instructed to recall the associated 

picture covertly but as vividly as possible and keep the mental image in their mind. Critically, 

visual input during this phase was highly similar across trials because entire maps were always 

presented, just with different locations highlighted. Next, participants were asked to give the 

responses on two multiple-choice questions within 7s (3.5s for each question): (1) “how confident 

are you about the retrieval?” They responded with one of the four following response options: 

Cannot recall, low confidence, middle confidence, and high confidence.  (2) “Please indicate the 

category of the picture you were recalling?” They also had four options to choose from (Animal, 

Human, Object, and Scene).
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Figure 4.1 Schematic of the experiment design. (A) Timeline of the two-day experimental procedures. 
Red lines below the timeline indicate the tasks in the MRI scanner. The trial structure with exact timing was 
depicted in Figure S4.1. (B) During the familiarization phase, all of the pictures of the to-be-remembered 
associations were randomly presented four times for the familiarization and estimation of picture-specific 
activation patterns. To keep participants focused, on each trial, they were instructed to categorize the picture 
shown as an animal, human, location, or object. (C) Study phase. Participants were trained to associate 
memory cues with presented pictures. (D) Modulation phase. After 24 hours, we used the Think/No-Think 
paradigm to modulate consolidated associative memories. Participants were instructed to actively retrieve 
associated pictures in mind (“retrieval”), or suppress the tendency to recall them (“suppression”) according 
to the colors of the frames (GREEN: retrieval; RED: suppression) around locations. (E) Final memory test 
phase. Participants performed the final memory test after the modulation. For each of the 48 location-picture 
associations, locations were presented again, and participants were instructed to report the memory 
confidence and categorize the picture that came to mind.
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Behavioral data analysis

Familiarization phase

We did not calculate the accuracy of the category judgment during the familiarization phase 

because the categorization of a picture could be a rather subjective decision, and it is not 

relevant for the aim of this study. However, we used individual responses to control for subjective 

category categorization for the following memory performance evaluation. Specifically, if a 

participant consistently labeled a given picture across four repetitions as a different category 

compared to our predefined labels, we generated an individual-specific category label and used 

this category label for this picture to evaluate the responses in the final test. Otherwise, we used 

predefined labels to evaluate the responses.

Typing test

Participants’ answers were evaluated by two native Dutch experimenters (S.M and J.V) 

independently. The general principle is that if the answer contains enough specific information 

(e.g., a little black cat), to allow the experimenter to identify the picture from the 48 pictures used, 

it was labeled as correct. In contrast, if the answer is not specific enough (e.g., a small animal), 

then it was labeled as incorrect. We used Cohen’s kappa coefficient ( ) to measure inter-rater 

reliability. In general,  lager than 0.81 suggests almost perfect reliability. If two accessors had 

different evaluations, the third accessor (W.L) determined the final result (i.e., correct or incorrect). 

After the immediate typing test, we only invited participants with at least 50% accuracy to the 

Day2 experiment. Three out of 35 recruited participants did not continue on Day2 due to low 

performance on Day1. For the typing test 24 hours later, participants’ responses were evaluated 

by the same experimenters again. Based on the participants’ responses in this typing test, we 

identified picture-location associations that the given participant did not learn or already forgot. 

These associations were not considered in the following behavioral and neuroimaging analyses, 

because participants have no memory associations to be modulated. We calculated the average 

accuracies for the immediate typing test and typing test 24 hours later and investigated the 

delay-related decline in memory performance using a paired t-test. 

Modulation phase

Responses during the modulation phase were analyzed separately for retrieval trials and 

suppression trials. We first calculated the percentage of each option (never, sometimes, often, 

and always) chosen across 160 retrieval trials and 160 suppression trials for each participant. 

Next, we quantified the dynamic changes in task performance across repetitions (runs). Before 

the following analyses, we coded the original categorical variable using numbers (Never-1; 

Sometimes-2; Often-3; Always-4). For all the established picture-location associations, we 

calculated their average retrieval frequency rating (based on retrieval trials) and intrusion 

frequency rating (based on suppression trials) on each repetition. We used a repeated-measures 
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ANOVA to model changes in retrieval and intrusion frequencies rating across repetitions to test 

if the repeated attempt to retrieve or suppress a memory trace would strengthen or weaken the 

associations, respectively. Additionally, to quantify individual differences in memory suppression 

efficiency (B. J. Levy & Anderson, 2012), we calculated the intrusion slope score for each 

participant. Using all the intrusion rating for suppression trials, we used linear regression to 

calculate the slope of intrusion ratings across the ten repetitions for each participant. Participants 

with more negative slope scores are better at downregulating memory intrusions than those with 

less negative slope scores. 

The final memory test phase

For each trial of the final memory test, we calculated both a subjective memory measure based 

on the confidence rating (1,2,3,4) and an objective memory measure based on the category 

judgment (correct/incorrect). Also, we recorded the reaction times (RT) for category judgments 

to estimate the speed of memory retrieval. To investigate the effect of types of modulation on the 

subjective, objective memory, and retrieval speed, we performed a repeated-measure ANOVA 

to detect within-participants’ differences between RETRIEVAL ASSOCIATIONS, SUPPRESSION 

ASSOCIATIONS, and CONTROL ASSOCIATIONS. To assess individual differences in 

suppression-induced forgetting, we calculated the suppression score by subtracting the 

objective memory measure of retrieval suppression associations (“no-think” items) from the 

control association. Participants showed more forgetting as the result of suppression had more 

negative suppression scores. 

Combinatory analysis of modulation and final test phase

To replicate the relationship between memory suppression efficiency during the TNT task 

and suppression-induced forgetting during the final memory test reported before (B. J. Levy 

& Anderson, 2012), we correlated suppression scores with intrusion slope scores across all 

participants. Notably, sample size (N=26) of this cross-participant correlational analysis is 

modest, but it is just a replication analysis of the previous study and the check for the memory 

suppression manipulation.

fMRI data acquisition and pre-processing

Acquisition

MRI data were acquired using a 3.0 T Siemens PrismaFit scanner (Siemens Medical, Erlangen, 

Germany) and a 32 channel head coil system at the Donders Institute, Centre for Cognitive 

Neuroimaging in Nijmegen, the Netherlands. For each participant, MRI data were acquired 

in two MRI sessions (around 1 h for each session) with 24 h’ interval. We used three types 

of sequences in this study: (1) a 3D magnetization-prepared rapid gradient echo (MPRAGE) 

anatomical T1-weighted sequence with the following parameters: 1 mm isotropic, TE = 3.03 
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ms, TR = 2300 ms, flip angle = 8 deg, FOV = 256 × 256 × 256 mm; (2) Echo-planar imaging 

(EPI)-based multi-band sequence (acceleration factor=4) with the following parameters: 68 

slices (multi-slice mode, interleaved), voxel size 2 mm isotropic, TR = 1500 ms, TE = 39 ms, 

flip angle =75 deg, FOV = 210 × 210 × 210 mm; (3) field map sequence (i.e. magnitude and 

phase images) were collected to correct for distortions (voxel size of 2 × 2 × 2 mm, TR = 1,020 

ms, TE = 12 ms, flip angle = 90 deg).

During the day1 session, anatomical T1 image was acquired firstly, followed by the field map 

sequence. Before the four EPI-based pattern localization runs, 8 minutes of resting-state data 

were acquired from each participant using the same sequence parameters. Day2 session began 

with the field map sequence. Thereafter, we acquired six EPI-based task-fMRI runs (five runs of 

the modulation phase and one run of the final test phase).

Preprocessing of neuroimaging data

All functional runs underwent the same preprocessing steps using FEAT (FMRI Expert Analysis 

Tool) Version 6.00, part of FSL (FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl)(Jenkinson 

et al., 2012). In general, the pipeline was based on procedures suggested by Mumford and 

colleagues (http://mumfordbrainstats.tumblr.com) and the suggestions for Automatic Removal 

of Motion Artifacts (ICA-AROMA) (Pruim et al., 2015). The first four volumes of each run were 

removed from the 4D sequences for scanner stabilization. The following preprocessing was 

applied; Motion correction using MCFLIRT (Jenkinson et al., 2002); field inhomogeneities were 

corrected using B0 Unwarping in FEAT; non-brain removal using BET (S. M. Smith, 2002); 

grand-mean intensity normalization of the entire 4D dataset by a single multiplicative factor. 

We used different spatial smoothing strategies based on the type of analysis. For data used in 

univariate analyses, we applied a 6mm kernel. In contrast, for data used in multivariate pattern 

analyses, no spatial smoothing was performed to keep the voxel-wise pattern information. In 

addition to the default FSL motion correction algorithm, we used ICA-AROMA to further remove 

the motion-related spurious noise and chose the results from the “non-aggressive denoising” 

algorithm for the following analyses. Prior to time-series statistical analyses, highpass temporal 

filtering (Gaussian-weighted least-squares straight-line fitting with sigma=50.0s) was applied.

Registration between all functional data, high-resolution structural data, and standard space 

was performed using the following steps. First, we used the Boundary Based Registration (BBR) 

(Greve & Fischl, 2009) to register functional data to the participant’s high-resolution structural 

image. Next, registration of high resolution structural to standard space was carried out using 

FLIRT (Jenkinson et al., 2002; Jenkinson & Smith, 2001) and was then further refined using 

FNIRT nonlinear registration (Andersson et al., 2007). Resulting parameters were used to align 

maps between native-space and standard space and back-projected region-of-interests into 

native space.
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Anatomical Region-of-Interest (ROI) in fMRI analyses

Based on previous pattern reinstatement studies (Jonker et al., 2018; H. Lee et al., 2017; S.-H. 

Lee et al., 2019; Polyn et al., 2005; Maria Wimber et al., 2015), we hypothesized that ventral visual 

cortex (VVC), parietal lobe and hippocampus might carry picture-specific and category-specific 

information of the memory contents during retrieval. Therefore, we chose them as the ROIs in 

our fMRI analyses. All ROIs were first defined in the common space and back-projected into the 

participant’s native space for within-participant analyses using parameters obtained from FSL 

during registration.

We defined anatomical VVC ROI based on the Automated Anatomical Labeling (AAL) human 

atlas, which is implemented in the WFU pickatlas software (http://fmri.wfubmc.edu/software/

PickAtlas). The procedure was used before in a previous neural reactivation study conducted 

by Wimber and colleagues (Maria Wimber et al., 2015). Brain regions, including bilateral inferior 

occipital lobe, parahippocampal gyrus, fusiform gyrus, and lingual gyrus were extracted from the 

AAL atlas and combined to the VVC mask. The VVC mask was mainly used as the boundary to 

locate visual-related voxels in the following activity pattern analyses.

The ROIs of the hippocampus and parietal lobe (including angular gyrus (AG), supramarginal 

gyrus (SMG), and precuneus) were defined using a bilateral mask within the AAL provided by 

WFU pickatlas software. To yield better coverage of participants’ anatomy, we extended the 

original mask by two voxels in each direction (i.e., dilated by a factor of 2 in the software). 

Univariate Generalized Linear Model (GLM) analyses of response amplitude

GLM analyses of neuroimaging data from the final test phase

To investigate how different modulations (retrieval/suppression) affect the subsequent univariate 

activation, we ran voxel-wise GLM analyses of the final test run. All time-series statistical analysis 

was carried out using FILM with local autocorrelation correction (Woolrich et al., 2001) using 

FEAT. In total, six regressors were included in the model. We modeled the presentation of memory 

cues (locations) as three kinds of regressors (duration=4s) based on their modulation history 

(retrieval, suppression, or control). To account for the effect of unsuccessful memory retrieval, 

we separately modeled the location-picture associations that participants could not recall as 

a separate regressor. Lastly, button presses were modeled as two independent regressors 

(confidence and category judgment). All trials were convolved with the default hemodynamic 

response function (HRF) within the FSL.

We conducted two planned contrasts (retrieval vs. control and suppression vs. control) first at the 

native space and then aligned, resulting in statistical maps to MNI space using the parameters 

from the registration. These aligned maps were used for the group-level analyses and corrected 
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for multiple comparisons using default cluster-level correction within FEAT (voxelwise Z>3.1, 

cluster-level p < .05 FWER corrected). All of the contrasts were first conducted at the whole-brain 

level. Then, for the ROI analyses, we extracted beta values of these ROIs from the final test and 

compared them for the same contrasts (retrieval vs. control and suppression vs. control).

GLM analyses of neuroimaging data from the modulation phase 

We ran the voxel-wise GLM analyses for each modulation run separately. In total, three regressors 

were included in the model. We modeled the presentation of the memory cues (location) as 

two kinds of regressors (duration=3s) according to their modulation instruction (retrieval or 

suppression). Button press was modeled as one independent regressor. Also, if applicable, 

location-picture associations that our participants could not recall were modeled as a regressor. 

For ROI analyses, we extracted beta values of these ROIs from whole-brain maps of each 

modulation run separately. We investigated repetition-related changes in beta values using the 

Repeated ANOVA for retrieval and suppression separately.

Multivariate pattern analyses of brain activation patterns

Activity pattern estimation 

All preprocessed (unsmoothed) familiarization, modulation, and final test functional runs were 

modeled in separate GLMs in each participant’s native space. For each trial within familiarization, 

we generated a separate regressor using the onset of picture presentation and 3s as the 

duration. At the same time, we generated one regressor for all button presses of the category 

judgment to control for the motor-related brain activity. In total, 49 regressors were included in 

the model. This procedure led to a separate statistical map (t-values) for each trial. Similarly, for 

each modulation and final test run, we generated a separate regressor using the onset of the 

presentation of location (memory cue) and 3s as the duration. However, button presses were not 

included in the model because they may potentially carry ongoing memory-related information. 

Also, we got a separate t map for each modulation or test trial.  

Searchlight analysis of picture-sensitive voxels

For each participant, brain data on the familiarization phase (i.e., pattern localization phase) 

was analyzed using the searchlight method (Kriegeskorte et al., 2006, 2008) across the entire 

brain. More specifically, for each searchlight (centered at every voxel in the brain, a sphere with 

the radius of 5mm) of each participant, we trained Support Vector Classification (SVC) classifier 

to differentiate the activity patterns elicited by each picture (or each category) and tested its 

predictive power using the leave-one-run-out cross-validation. SVC was implemented using 

the C-Support Vector Machine within the scikit-learn package (https://scikit-learn.org/stable/) 

(Pedregosa et al., 2011). The multiclass classification was handled according to a one-vs.-one 

scheme. We used default parameters of the function (regularization (C)=1, radial basis function 
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kernel with degree=3). The same setting was applied for all classification described below. 

Specifically, for each trial, activity patterns within the searchlight were extracted. Since each 

picture was presented four times during four pattern localization runs, in total, we got four 

activity patterns within the searchlight for each picture. The within-participant classification was 

performed using the leave-one-run-out cross-validation: activity patterns of one particular run 

were left out as the testing dataset, and the remaining three runs were used as the training 

dataset to train the SVC classifier. After all the training-testing procedures, our analyses resulted 

in one accuracy value to represent the overall predictive power of the activity patterns within this 

particular searchlight. The searchlight walked through the entire brain of each participant. After 

the searchlight procedure, each participant yielded a classification accuracy map, and each 

voxel within the map stored the classification accuracy of that particular searchlight sphere. To 

allow the group inferences of the brain regions, we performed one-sample t-tests on all of the 

classification accuracy maps and tested them against chance (chance level=1/48, 2%). Since we 

would like to identify picture-sensitive voxels within the VVC, we overlapped the voxels identified 

by the searchlight (p uncorrected<0.001) with the anatomical VVC mask. Because choosing the p 

uncorrected<0.001 as the threshold is arbitrary, we also used other thresholds (p uncorrected<0.05 and 

p uncorrected<0.01) to define the significant voxels and further validated our results using different 

threshold-dependent masks. 

We already used the within-participant searchlight analysis to localize stimuli-sensitive voxels in 

visual areas. We validated these identified VVC voxels in a cross-participant procedure. By doing 

this, we explored whether visual perception-related activation patterns of these voxels are shared 

across participants. Specifically, instead of performing the leave-one-run-out cross-validation 

within each participant, we used the three-fold cross-validation within the entire sample. Firstly, 

t maps for each picture, and each run were transformed from native space to standard space 

to enable the cross-participant predictive model training and testing. Then, the identified voxels 

within the VVC were used as a mask to extract spatial patterns of activation. Finally, data from 

2/3 participants was used to train the SVC model, and the remaining 1/3 participants were used 

to assess the model. It is notable that cross-participant classification is just the confirmatory 

analysis of the searchlight classification and should not be regarded as independent analysis. 

The cross-participant classification was also repeated in three clusters of VVC voxels under 

different thresholds (p uncorrected<0.05, p uncorrected<0.01, and p uncorrected<0.001). 

Pattern reinstatement analysis

The VVC voxels identified by searchlight analysis and other anatomical-defined masks 

(including hippocampus, AG, SMG, and precuneus) were used as the mask in the cross-task 

classification of memory contents. For each trial’s t-map estimated based on the final test 

run, we transformed it from native space to standard space. ROI-based activity patterns from 
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both the pattern localization and final memory test phase were extracted using ROI masks. 

We performed cross-task three-fold cross-validation to reveal the shared neural representation 

of the perception and retrieval of the same visual stimulus. Activity patterns estimated based 

on the pattern localization of the 2/3 participants (i.e., training sample) were used to train the 

SVC predictive model. We used the activity pattern during the final memory test evoked by the 

corresponding location (memory cure) of the remaining 1/3 participants (i.e., testing sample), 

together with the trained SVC model to predict the memory content on a trial-by-trial basis. 

Critically, the SVC model was trained solely on the localizer data (day1), and it was applied to 

the final memory test (day2) without further model fitting. Moreover, during the final memory 

test, visual input is highly similar across trials because we just highlighted each location on an 

identical map as the memory cue. Therefore, if a given classifier can significantly predict memory 

content, the classification is unlikely based on the neural responses to the memory cue only. 

For each ROI, we first calculated the average decoding accuracy for each participant across all 

trials. A common way to evaluate the significance of classification accuracies is to compare them 

with theoretical chance level (i.e., 1/number of categories). However, previous work has shown 

that this approach may overestimate the classification significance (Combrisson & Jerbi, 2015; 

Jamalabadi et al., 2016; Kowalczyk & Chapelle, 2005). We used an alternative method to control 

for this potential bias. For each decoding analysis, we generated an empirical null distribution 

of accuracies by repeating our decoding analyses with classifiers training on randomly shuffled 

labels (N=1000). Only accuracies whose values are larger than the 95th percentile of this null 

distribution were considered significant. Values that were larger than the maximum accuracy 

within this null distribution were assigned a p-value of<0.001.

ROI-based trial-by-trial pattern similarity analysis on the modulation and final memory test 

data

Representation similarity analysis (RSA) (J. D. Cohen, Daw, Engelhardt, Hasson, Li, Niv, 

Norman, Pillow, Ramadge, Turk-Browne, & others, 2017) was used to calculate trial-by-trial 

pattern similarity within particular types of test trials (e.g., recall of associations belongs to the 

RETRIEVAL ASSOCIATIONS). Given the nature of the within-participant analysis and to improve 

the pattern similarity estimation, we based all calculations on activity patterns in the native space. 

Firstly, we analyzed the multivariate activation patterns of the final test. The identified VVC voxels 

(Figure 4.2A) were transformed from standard space to native space and then used as a mask 

to extract 3D single-trial activity patterns to 2D vectors and z-scored for the latter correlational 

analysis. Activation patterns of the hippocampus (Figure 4.2B), angular gyrus (Figure 4.2C), 

supramarginal gyrus (Figure 4.2D), and precuneus (Figure 4.2E) were extracted in the same 

way. For each participant, after excluding all trials with incorrect memory-based category 

judgment, we divided the remaining trials into three conditions based on their modulation history 

(e.g., retrieval practice or retrieval suppression). Next, for activity patterns of trials within the same 
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condition, we calculated neural pattern similarity using Pearson correlations between all possible 

pairs of trials within the condition (Figure 4.2F). The calculations led for each participant to three 

separate correlation matrices, one for each type of test trials for each participant. Finally, we 

used the mean value of all of the r-values located at the left-triangle of one participant-specific 

correlation matrix to represent the neural pattern similarity of that condition (the higher the r-value, 

the lower the pattern similarity). After repeating these steps for each participant separately, three 

kinds of pattern similarity values were generated for the statistical test. All mean r-values were 

Fisher-r-to-z transformed before the following statistical analyses. To investigate if different 

modulations have different effects on memory representation during the final test, we performed 

two planned within-participant comparisons: (1) RETRIEVAL ASSOCIATIONS vs. CONTROL 

ASSOCIATIONS; (2) SUPPRESSION ASSOCIATIONS vs. CONTROL ASSOCIATIONS.

Next, we used the same approach to analyze the modulation data. For each presented location, 

activity patterns were extracted using the same mask from five modulation runs. Similarly, 

within-condition (retrieval or suppression) trial-by-trial pattern similarity was calculated for each 

condition and each run. The dynamic change was modeled using the condition by run interaction 

using the ANOVA analysis.

Statistical analysis

When comparing continuous variables (e.g., reaction time) between experimental conditions, 

we used repeated Analysis of variance (ANOVA) or paired t-test. A significant main effect in 

an ANOVA was followed by post hoc tests, in which multiple comparisons were corrected by 

the Holm–Bonferroni method. Notably, classification accuracies were not normally distributed. 

Therefore, we used non-parametric methods (i.e., Friedman Test) to compare accuracies between 

experimental conditions. To evaluate the significances of classification accuracy, instead of 

comparing with theoretical chance levels, we compared real accuracies with an empirical null 

distribution of accuracies (See Pattern reinstatement analysis above). Accuracies were considered 

significant when they were at least higher than the 95th percentile of the corresponding null 

distribution. For ordinal responses (e.g., “never,” “sometimes”), the percentage of each option 

was calculated, and then percentages were compared across repetitions. To account for the 

number of comparisons that come with multiple ROIs (n=9), we applied False Discovery Rate 

correction based on the Benjamini-Hochberg procedure (Thissen et al., 2002). For all statistical 

tests that involved multiple ROIs, FDR-corrected p values (pFDR) are reported along with raw p 

values (praw) and effect sizes (e.g., Cohen’s d, partial ²).

Data and code availability.

Custom scripts used in this study, immediate data (i.e., preprocessed single-trial activation 

patterns used for reinstatement analyses) as well as raw data were uploaded to the Donders 
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Repository (https://data.donders.ru.nl/). The project was named as Tracking the involuntary 

retrieval of unwanted memory in the human brain with functional MRI in the Repository (https://

doi.org/10.34973/5afg-7r41). 

Figure 4.2 Regions-of-interest (ROI) and rationale of the pattern similarity analysis. (A) 
Functionally-defined voxels within the ventral visual cortex (VVC). We identified voxels whose activity 
patterns can be used to differentiate pictures that were processed during the familiarization phase and 
were reactivated during successful memory retrieval during the final test. (B) Anatomically-defined bilateral 
hippocampus ROI. (C) Anatomically-defined bilateral angular gyrus ROI. (D) Anatomically-defined bilateral 
supramarginal gyrus ROI. (E) Anatomically-defined bilateral precuneus ROI. (F) During the final test, “mental 
images” were retrieved based on highly similar memory cues (different locations within maps were cued). 
We derived activation patterns for each memory retrieval trials based on fMRI data, and then quantify the 
cross-item pattern similarity using Pearson’s r. (G) Considering the highly similar perceptional processing, 
vivid “mental images” during memory retrieval should be reflected in lower activity pattern similarity.
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Results

Behavioral results

Pre-scan memory performance immediately after study and 24 hours later

During the immediate typing test (day1), 88.01% of the associated pictures were described 

correctly (SD= 10.87%; range from 52% to 100%). Twenty-four hours later, participants still 

recalled 82.15% of all associations in the second typing test (SD = 13.87%; range from 50% 

to 100%). Although we observed less accurate memory 24 hours later (t(26) =4.73, p<0.001, 

Cohen’s d=0.912) (Figure S4.2), participants could still remember most location-picture 

associations well. 

Behavioral performance during the modulation phase 

During retrieval trials, participants reported that most associated pictures were successfully 

recalled (1-P never: mean=84.05%, SD=11.79 %, range from 56.25% to 100%; Figure 4.3A). This 

number is close to the accuracy of the second typing test immediately before the modulation 

phase. Critically, we observed that with repeated attempts to retrieve, the percentage of the 

four types of trial-by-trial retrieval frequency ratings changed differently over repetitions 

(Choice×Repetition: F [27,702]=3.4, p<0.001, ² =0.01; Figure 4.3B). More precisely, the 

percentage of reporting “always” increased (F [9,234]=5.3, p<0.001, ² =0.02), while the 

percentage of reporting “often” (F [9,234]=2.1, p=0.02, ² =0.01) and “sometimes” decreased  

(F [9,234]=2.0, p=0.03, ² =0.02).

For the analyses of suppression trials, we excluded all location-picture associations which the 

participant could not describe correctly immediately before the modulation phase (i.e., Typing 

Test Day2). This approach controlled for individual differences in memory that could interfere 

with the analysis of memory suppression. On suppression trials, participants reported that they 

successfully suppressed the tendency to recall the associated pictures in about half of the 

trials (Pnever: mean=50.62%, SD=25.35%, range from 4% to 92.5%; Figure 4.3C). As shown 

before in the think/no-think literature before (B. J. Levy & Anderson, 2012), the percentage 

of the four types of trial-by-trial intrusion reports changed differently from the first to the tenth 

repetition (Choice×Repetition: F [27,702]=3.4, p<0.001, ² =0.01; Figure 4.3D). Specifically, 

the percentage of reporting “never” increased (F [9,234]=5.4, p<0.001, ² =0.04), while the 

percentage of reporting “sometimes” (F [9,234]=2.5, p=0.008, ² =0.02) decreased over 

repetitions. These results together suggest that participants were successful at retrieving or 

suppressing memory traces according to task instructions.
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Memory performance during the final memory test 

During the final test, participants selected, on average, the correct category (chance level=1/4) 

for the associated picture on 91.82% (SD = 6.05%; range from 70.83% to 100%) of the 

successfully recalled associations of the typing test on day2 (mean=39.43). We then examined 

how repeated retrieval and suppression affected memory performance. First, we compared 

recall accuracies between three kinds of associations (i.e., RETRIEVAL ASSOCIATIONS, 

SUPPRESSION ASSOCIATIONS, and CONTROL ASSOCIATIONS). Analysis of objective recall 

accuracy after modulation showed no significant main effect of modulation (F [2,26]=0.524, 

p=0.595, ² =0.013; Figure 4.3E). Due to the lack of suppression-induced forgetting effect 

(lower accuracy for SUPPRESSION ASSOCIATIONS compared to CONTROL ASSOCIATIONS) at 

the group level, we performed a correlational analysis to associate performance during memory 

suppression and the final memory test. We found that participants who were more effective 

in suppressing intrusions (higher intrusion slope score) during the modulation phase were the 

ones who showed larger suppression-induced forgetting effects (r=0.411, p=0.03; Figure 

4.3F), suggesting that successful retrieval suppression was subsequently associated with 

suppression-induced forgetting. This correlation was also reported before in the think/no-think 

literature (B. J. Levy & Anderson, 2012). Additionally, we investigated the effect of modulation on 

memory confidence and found a significant main effect (F [2,26]=5.928, p=0.005, ² =0.07; 

Figure 3G). Post-hoc analyses revealed higher recall confidence for RETRIEVAL ASSOCIATIONS 

compared to the CONTROL ASSOCIATIONS (t(26)=3.35, p holm=0.007, Cohen’s d=0.64) and 

a trend towards higher confidence compared to SUPPRESSION ASSOCIATIONS that just failed 

to reach our threshold for statistical significance (t(26)=2.172, p holm=0.07, Cohen’s d=0.41). 

Finally, we asked if modulation affected retrieval speed indexed by the RT during the final test. 

Even though we did not find a significant main effect of modulation (F [2,26]=2.905, p=0.06, 

² =0.03; Figure 3H), recall of RETRIEVAL ASSOCIATIONS was faster compared to the recall of 

CONTROL ASSOCIATIONS (t(26)=-2.486, p=0.02, Cohen’s d=-0.47).
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Figure 4.3 Behavioral performance during modulation and final memory test phase. (A) Percentage 
of the trial-by-trial introspective report during the retrieval trials. For most of the retrieval trials, associated 
pictures were successfully recalled (1-Pnever: mean=84.05%, SD=11.79 %). (B) With repeated retrieval 
attempts, associated pictures were more likely to “always” stay in mind (Palways: F [9,234]=5.3, p<0.001, ² 
=0.02). (C) Percentage of the trial-by-trial introspective report during the suppression trials. During half of the 
suppression trials, participants successfully suppressed the tendency to recall the associated pictures (Pnever: 
mean=50.62%, SD=25.35%). (D) As the number of repetitions of suppression increase, the possibility of 
successful suppression increased (F [9,234]=5.4, p<0.001, ² =0.04). (E) There is no effect of retrieval or 
suppression on the accuracy of the categorization during the final test (p=0.595). (F) Participants who are 
more effective in reducing suppression failures (more negative the Intrusion Slope Score) were the ones 
who show more evidence suppression-induced forgetting (more negative the Suppression Score). (G) For 
RETRIEVAL ASSOCIATIONS, participants reported higher subjective confidence compared to SUPPRESSION 
ASSOCIATIONS (t(26)=2.172, pholm=0.07, Cohen’s d=0.41) , and CONTROL ASSOCIATIONS (t(26)=3.35, 
P holm=0.007, Cohen’s d=0.64). (H) For RETRIEVAL ASSOCIATIONS, participants spent less time during 
categorisation compared to the CONTROL ASSOCIATIONS (t(26)=-2.486, p=0.02, Cohen’s d=-0.47), and 
the effect between three conditions tend to be significant (F [2,26]=2.905, p=0.06, ² =0.03). a.u= arbitrary 
unit.

fMRI results

Measuring the pattern reinstatement of individual memory during retrieval

The Support Vector Classification (SVC)-based searchlight analysis revealed brain regions 

including the lateral occipital cortex, fusiform gyrus, lingual gyrus, and calcarine cortex, which 

showed picture-specific activation patterns during the perception (uncorrected pvoxel<0.001, 

Figure 4.4A). We restricted our following activation pattern analyses to these voxels within the 

anatomical VVC boundary (Figure 4.4B). Next, we confirmed that activation patterns of these 

voxels could be used for cross-participant classification of the visual stimulus during perception. 

We trained the SVC based on activation patterns of two-thirds of all participants and tested 

the model using the remaining one-third. Results from the three-fold cross-validation confirmed 

these VVC voxels do enable cross-participant picture classification (mean accuracy=61.88%, 

SD=17.71%, shuffled accuracy max=3.2%, p<0.001, Figure 4.4D).
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The preceding results established that activity patterns of voxels within the VVC carry 

picture-specific information during perception, we next examined if we can detect the pattern 

reinstatements of memory traces within the same area during the final memory test. We trained 

the SVC model based on the neuroimaging data from the pattern localization phase to classify 

the trial-by-trial memory content in the final test (Figure 4.4C). Results showed that the classifiers 

could decode memory content based on activity patterns during the final test with an accuracy 

(mean accuracy=43.13%, SD=16.52%, shuffled accuracy max=3.3%, p<0.001, Figure 4.4E), 

although the accuracy is significantly lower than the within-task classification of the perceived 

visual stimulus (t(26)=-3.97, p<0.001, Cohen’s d=-0.76, Figure 4.4F).

We ran two control analyses to test the robustness of observed pattern reinstatement in 

the VVC during retrieval. We first examined the effect of arbitrary thresholds used in cluster 

formation on the subsequent classification of memory contents. Specifically, we used the two 

additional thresholds (uncorrected p voxel=0.01 and 0.05) to identify picture-sensitive voxels 

during the whole-brain searchlight analysis and confirmed that the classifications could also 

be performed based on picture-sensitive voxels under other thresholds (0.01 and 0.05) (Figure 

S4.3).  In addition, beyond picture-specific classifications, we investigated the possibility 

of category-specific classifications based on brain activity patterns. All of the pictures to be 

associated can be categorized as one of the four following groups: animal, human, object, 

or location. Similarly, we localized category-sensitive voxels within the VVC (Figure S4.4D) 

and confirmed that these voxels also carry category-specific information during perception 

(mean accuracy=69.13%, SD=9.67%, shuffled accuracy max=29.6%, p<0.001, Figure S4.4E). 

Also, activity patterns of these category-sensitive voxels during memory retrieval could enable 

cross-participant, cross-task classification of the category during final memory test (mean 

accuracy=44.29%, SD=8.9%, shuffled accuracy max=30.4%, p<0.001, Figure S4.4E).
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Figure 4.4 Identify picture-sensitive voxels and measure pattern reinstatement in the ventral visual 
cortex. (A) Using the searchlight method, we localized picture-sensitive voxels in brain regions included 
lateral occipital cortex, fusiform gyrus, lingual gyrus, calcarine cortex, postcentral and precentral gyrus, 
supplementary motor area, and small clusters within the medial and inferior prefrontal cortex. These voxels 
showed picture-specific activation patterns during the perception (uncorrected p voxel<0.001). (B) We 
restricted our following pattern analyses into these voxels within the ventral visual cortex (VVC) boundary 
by overlapping the searchlight accuracy map and anatomical-defined VVC. (C) fMRI activation patterns 
of these voxels during pattern localization were extracted to train a classifier. The activity patterns of these 
voxels during the final test were further extracted and used as inputs for the classifier for different pictures. 
(D) The classifier was first validated in a cross-participant, within-task procedure. We demonstrated that 
picture-sensitive voxels voxels could enable the cross-participant picture classification during perception 
(mean accuracy=61.88%, SD=17.71%, p<0.001). (E) The same classifier, without further model training, 
was used for the decoding of memory contents based on activity patterns during retrieval. Results showed 
that the classifier can decode the memory contents with the accuracy higher than shuffled decoding models 
(mean accuracy=43.13%, SD=16.52%, p<0.001). (F) We observed the significant lower classification 
accuracies for cross-task classification compared to the within-task classification (t(26)=-3.97, p<0.001). The 
red line represents the 95th percentile of the accuracy within 1000 randomly label-shuffled null distribution.

Given the role of the hippocampus and parietal lobe in memory retrieval, we also performed the 

same pattern reinstatement pipeline (shown in Figure 4.4C) in these regions. We trained the 

classifier based on activity patterns of the hippocampus, angular gyrus, supramarginal gyrus, 

and precuneus during perception and applied it to decode memory content during retrieval. 

Activity patterns in these regions enabled us to perform picture-specific classification, but less 

accurately compared to visual areas (left hippocampus: mean accuracy=7.1%, SD=4.3%, 

p<0.001; right hippocampus: mean accuracy=6.5%, SD=2.8%, p<0.001; left AG: mean 

accuracy=10.9%, SD=7.2%, p<0.001; right AG: mean accuracy=10.9%, SD=9.1%, p<0.001; 

left SMG: mean accuracy=8.9%, SD=6.9%, p<0.001; right SMG: mean accuracy=13.5%, 

SD=12.8%, p<0.001; left precuneus: mean accuracy=16.2%, SD=8.9%, p<0.001; right 

precuneus: mean accuracy=18.1%, SD=7.4%, p<0.001; Figure S4.5). 
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Based on the same decoding pipeline, we performed a control pattern reinstatement analysis 

on activation patterns within the premotor cortex (Figure S4.6A), which, according to the 

reinstatement model, is not expected to represent memory content during retrieval (details see 

Supplemental Texts; Section4). Even for the category-based decoding, which requires less 

information than the item-based decoding, activation patterns of this area during retrieval could 

not be used to classify memory contents (Figure S4.6B).

Without considering the modulation of each association (i.e., retrieval, suppression, or control), 

we demonstrated pattern reinstatement of individual memories during retrieval after 24 hours 

delay. Based on the differences in RT and confidence, we tested whether different modulations 

have different effects on the evidence (i.e., decoding accuracy or decision value (Linde-Domingo 

et al., 2019)) of memory reactivation. For example, if repeated retrieval increased the reactivation 

evidence, while suppression decreased the evidence). We performed these analyses based 

on classifier training in both cross-participant and within-participant manner. These analyses 

yielded no significant results between different modulations in all ROIs investigated (Details in 

Supplemental Materials; Table S4.1-S4.4). 

In sum, we identified picture-specific voxels within the VVC and demonstrated the pattern 

reinstatements of individual memory traces in these voxels during retrieval. The same pattern 

reinstatements were detected in anatomical-defined hippocampus, AG, SMG, and precuneus. 

These results are the foundations of our following multivariate pattern analysis: the pattern 

reinstatements 24 hours after initial learning suggested that activity patterns of these regions 

during retrieval carry mnemonic representations. 

Repeated retrieval leads to reduced activity amplitude, but more distinct activity patterns 

Repeated retrieval dynamically reduces the activity amplitude in the visual cortex and hippocampus: 

compared to CONTROL ASSOCIATIONS, retrieval of RETRIEVAL ASSOCIATIONS was associated 

with less activation in medial occipital cortex, fusiform gyrus, supplementary motor area (SMA), 

anterior/medial cingulate cortex (MCC), left precentral gyrus, precuneus, bilateral insula, and 

bilateral inferior frontal gyrus (IFG) (voxelwise Puncorrected<0.001, p FWE-cluster<0.05; Figure S4.7A; 

Table S4.5). The VVC cluster revealed by the whole-brain analysis largely overlapped with 

our functional-defined VVC voxels (see Figure S7 for comparison). Our ROI analysis of these 

functionally-defined picture-sensitive voxels confirmed the observation: we found a reduced 

activity amplitude of picture-sensitive voxels for RETRIEVAL ASSOCIATIONS compared to 

CONTROL ASSOCIATIONS (t(26)=-4.8, praw<0.001, pFDR<0.001, Cohen’s d=-0.92; Figure 

4.5A). The whole-brain analysis did not show an effect of retrieval on the activity amplitude in 

hippocampal voxels under the same threshold. However, ROI-based analysis of hippocampal 

signal found reduced activity when retrieving RETRIEVAL ASSOCIATIONS compared to CONTROL 
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ASSOCIATIONS (left hippocampus: t(26)=-2.43, praw=0.022, pFDR=0.06, Cohen’s d=-0.46; 

Figure 4.5E; right hippocampus: t(26)=-2.18, praw=0.038, pFDR=0.06, Cohen’s d=-0.42; Figure 

4.5G). For six ROIs of the parietal lobe, we only found a similar retrieval-related activity reduction 

in the right AG (t(26)=-2.68, praw=0.012, pFDR=0.05, Cohen’s d=-0.51; Figure 4.6C) and the 

right precuneus (t(26)=-2.33, praw=0.027, pFDR=0.06, Cohen’s d=-0.45; Figure 4.6K), but 

which was not significant in the left AG (t(26)=-1.57, praw=0.12, pFDR=0.13, Cohen’s d=-0.30; 

Figure 4.6A), left SMG (t(26)=1.65, praw=0.11, pFDR=0.13, Cohen’s d=0.31; Figure 4.6E), right 

SMG (t(26)=1.32, praw=0.19, pFDR=0.19, Cohen’s d=0.25; Figure 4.6G), or left precuneus 

(t(26)=-1.91, praw=0.067, pFDR=0.08, Cohen’s d=-0.36; Figure 4.6I).

Next, we confirmed that the observed activity reduction is related to a linear decrease in activity 

with repeated retrieval using the data from the modulation phase. Specifically, we extracted 

the beta coefficient from these clusters for each run of the modulation phase and tested for 

the change in activity amplitude across runs. We found reduced VVC activity over repeated 

retrieval attempts (F [4, 25]=5.95, p<0.001, ² =0.174). Similarly, for the bilateral hippocampus, 

we observed a trend toward a gradual decrease of hippocampal signal across repetitions 

(left hippocampus: F [4, 25]=2.39, p=0.056, ² =0.087 ; right hippocampus: F [4, 25]=2.22, 

p=0.072, ² =0.082). Even though we found the retrieval-related activity reduction in right AG 

and precuneus during the final test, we did not find the corresponding gradual decrease during 

modulation (right AG: F [4, 25]=0.734, p=0.571, ² =0.02; right precuneus: F [4, 25]=1.88, 

p=0.12, ² =0.05).

Repeated retrieval dynamically enhances the distinctiveness of activity patterns in the visual cortex, 

but not hippocampus: focusing on the identified VVC voxels, parietal lobe and hippocampus, 

we calculated the trial-by-trial activity pattern similarity for RETRIEVAL ASSOCIATIONS and 

CONTROL ASSOCIATIONS separately. Results show that retrieval-related activity patterns 

for RETRIEVAL ASSOCIATIONS have decreased similarity in VVC compared to CONTROL 

ASSOCIATIONS (t(26)=-2.3, praw=0.029, pFDR=0.08, Cohen’s d=-0.44; Figure 4.4C). To test 

the robustness of decreased pattern similarity for RETRIEVAL ASSOCIATIONS in the VVC, 

we performed the same contrast based on (1) all associations instead of only remembered 

association, the VVC areas defined by (2) different thresholds and (3) category-sensitive voxels 

instead of picture-sensitive voxels. All control analyses yield the same result as the reported main 

analysis (Figure S4.8-S4.10). However, we did not observe a similar effect in the hippocampus 

(left hippocampus: t(26)=-0.91, praw=0.36, pFDR=0.40, Cohen’s d=-0.177, Figure 4F; right 

hippocampus: t(26)=-0.456, praw=0.65, pFDR=0.65, Cohen’s d=-0.088 ; Figure 4.4H). For six 

ROIs of the parietal lobe, retrieval-related decreases in pattern similarities were found in right AG 

(t(26)=-2.148, praw=0.04, pFDR=0.08, Cohen’s d=-0.413; Figure 4.6D), left SMG (t(26)=-2.1, 

praw=0.045, pFDR=0.08, Cohen’s d=-0.406; Figure 4.6F), left precuneus (t(26)=-2.2, praw=0.035, 
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pFDR=0.08, Cohen’s d=-0.428; Figure 4.6J) and right precuneus (t(26)=-2.8, praw=0.009, 

pFDR=0.08, Cohen’s d=-0.54; Figure 4.6M). Similar trend was found in left AG (t(26)=-1.8, 

praw=0.07, pFDR=0.10, Cohen’s d=-0.36; Figure 4.6B) and right SMG (t(26)=-1.79, praw=0.08, 

pFDR=0.10, Cohen’s d=-0.34; Figure 4.6H), but failed to reach significance. 

Our ROI analyses already found reduced activity amplitude, but more distinct activity patterns 

in VVC, right AG, and precuneus. Then we performed the correlational analysis to explore the 

relationship between changes in activity amplitude and changes in pattern similarity across 

participants. We found that participants who showed a larger reduction in VVC’s activity amplitude 

were more likely to show a larger decrease in VVC pattern similarity (r=0.610, p<0.001; Figure 

4.5C). This correlation is also significant for right precuneus (r=0.427, p=0.026), but not for right 

AG (r=-0.051, p=0.799). 

To characterize the dynamic modulation of pattern similarity in the VVC, we further applied 

the same variability analysis to each run of the modulation phase and analyzed these pattern 

similarity values using a 2×5 ANOVA (modulation; repetition). We saw a significant main effect 

of run, reflecting that pattern similarity of the VVC decreased with repetitions (F [4, 100]=10.55, 

p<0.001, ² =0.028). We also saw a main effect of modulation, reflecting that pattern similarity 

of the RETRIEVAL ASSOCIATIONS is consistently lower than the similarity of SUPPRESSION 

ASSOCIATIONS (F [1, 25]=23.77, p<0.001, ² =0.028). The interaction between modulation 

and runs just failed to be significant (F [4, 100]=2.427, p=0.053, ² =0.001; Figure 4.5D). This 

pattern of results suggests that decreased pattern similarity is not only the result of repetition: 

even though memory cues of SUPPRESSION ASSOCIATIONS have also been presented ten 

times during the modulation, repeated retrieval more effectively enhanced pattern distinctiveness 

compared to suppression. We applied the same dynamic modulation analysis to the ROIs, which 

demonstrated lower cross-item pattern similarity for RETRIEVAL ASSOCIATIONS (i.e., right AG, 

left SMG, and bilateral precuneus) during the final memory test phase, but we found no evidence 

for an interaction between modulation and runs (right AG: F [4, 100]=1.42, p=0.23, ² =0.001; 

left SMG: F [4, 100]=0.23, p=0.92, ² =0; left precuneus: F [4, 100]=2.13, p=0.08, ² =0.002;  

right precuneus: F [4, 100]=0.51, p=0.72, ² =0.002).
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Figure 4.5  Repeated retrieval dynamically modulated activity amplitude and pattern similarity. (A) 
During the final test, compared to CONTROL ASSOCIATIONS, RETRIEVAL ASSOCIATIONS was associated 
with lower activity amplitude in voxels within the ventral visual cortex identified in the pattern reinstatement 
analysis. (B) Lower pattern similarity in these VVC voxels for RETRIEVAL ASSOCIATIONS compared to the 
CONTROL ASSOCIATIONS during the final test. (C) Across participants, the extent of activity amplitude 
reduction positively correlated with enhancement in pattern distinctiveness. (D) Dynamically decreased 
pattern similarity in the VVC. For both RETRIEVAL ASSOCIATIONS and SUPPRESSION ASSOCIATIONS, 
VVC’s pattern similarity increased over repetitions during the modulation. However, repeated retrieval tends 
to more effectively decrease pattern similarity compared to suppression. (E) Reduced left hippocampal 
activity amplitude for RETRIEVAL ASSOCIATIONS compared to CONTROL ASSOCIATIONS during the final 
test. (F) No differences in left hippocampal activity pattern similarity between RETRIEVAL ASSOCIATIONS 
and CONTROL ASSOCIATIONS  during the final test. (G) Reduced right hippocampal activity amplitude for 
RETRIEVAL ASSOCIATIONS compared to CONTROL ASSOCIATIONS during the final test. (H) No differences 
in right hippocampal activity pattern similarity between RETRIEVAL ASSOCIATIONS and CONTROL 
ASSOCIATIONS during the final test. 
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4Figure 4.6. Effect of repeated retrieval on activity amplitude and patterns similarity of the parietal lobe. 
(A) No differences in activity amplitude of left angular gyrus. (B) No differences in activity pattern similarity 
of the left angular gyrus. (C) Lower pattern similarity of right angular gyrus for RETRIEVAL ASSOCIATIONS 
compared to the CONTROL ASSOCIATIONS. (E) No differences in activity amplitude of left supramarginal 
gyrus. (F) Lower pattern similarity of left supramarginal gyrus for RETRIEVAL ASSOCIATIONS compared to 
the CONTROL ASSOCIATIONS. (G) No differences in activity amplitude of right supramarginal gyrus. (H) No 
differences in activity pattern similarity of right supramarginal gyrus. (I) No differences in activity amplitude 
of left precuneus. (J) Lower pattern similarity of left supramarginal gyrus for RETRIEVAL ASSOCIATIONS 
compared to the CONTROL ASSOCIATIONS. (K) Reduced activity amplitude of right precuneus for 
RETRIEVAL ASSOCIATIONS compared to CONTROL ASSOCIATIONS. (M) Lower pattern similarity of left 
supramarginal gyrus for RETRIEVAL ASSOCIATIONS compared to the CONTROL ASSOCIATIONS.

Retrieval suppression was associated with reduced lateral prefrontal activity

Weaker lateral prefrontal cortex (LPFC) activation as the result of retrieval suppression: the contrast 

between retrieval of SUPPRESSION ASSOCIATIONS and CONTROL ASSOCIATIONS during the 

Z peak=4.09, size=1320 mm3; Figure 4.7A). We did not find any significant effect of retrieval 

suppression on hippocampal activity amplitude in the whole-brain or the ROI analysis (left 

hippocampus: t(26)=-1.14, p=0.26, Cohen’s d=-0.22; right hippocampus: t(26)=-0.81, p=0.43, 

Cohen’s d=-0.15). Also, repeated retrieval suppression was associated with reduced activity in 

the right AG (t(26)=-2.07, p=0.048, Cohen’s d=-0.40), but not left AG (t(26)=-0.865, p=0.395, 

Cohen’s d=-0.16), left SMG (t(26)=1.214, p=0.236, Cohen’s d=0.23), right SMG (t(26)=0.867, 

p=0.394, Cohen’s d=0.16), left precuneus (t(26)=-0.77, p=0.44, Cohen’s d=-0.15) or right 

precuneus (t(26)=-1.13, p=0.26, Cohen’s d=-0.21).

To characterize dynamical activity changes in the left LPFC, we extracted beta values from 

the cluster for each modulation run and did not find decreased activity from the first to the 

fifth run during suppression (F [4, 25]=2.03, p=0.09, ² =0.056; Figure 4.7B). Subsequently, 

we performed an exploratory analysis to restrict analysis within the first four runs and found a 

gradually decreased activity in the left lPFC (F [3, 25]=2.98, p=0.036, ² =0.078).

Intact neural representations after memory suppression: next, we examined if retrieval suppression 

modulated activity patterns in the VVC, hippocampus, or parietal lobe. Pattern similarity analysis 
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revealed no significant difference between SUPPRESSION ASSOCIATIONS and CONTROL 

ASSOCIATIONS in all regions investigated (VVC: t(26)=-1.035, p=0.31, Cohen’s d=-0.19; left 

hippocampus: t(26)=-0.78, p=0.43, Cohen’s d=-0.15; right hippocampus: t(26)=-.010, p=0.92, 

Cohen’s d=-0.02; left AG: t(26)=0.44, p=0.663, Cohen’s d=-0.08; right AG: t(26)=-0.48, 

p=0.63, Cohen’s d=-0.09; left SMG: t(26)=-1.29, p=0.206, Cohen’s d=-0.25; right SMG: 

t(26)=-1.15, p=0.26, Cohen’s d=-0.22; left precuneus: t(26)=-0.47, p=0.63, Cohen’s d=-0.09; 

right precuneus: t(26)=-1.29, p=0.2, Cohen’s d=-0.25). Give the modest effect of memory 

suppression on final memory performance, but the strong correlation between the intrusion slope 

and suppression-induced forgetting, we further investigated suppression-induced changes 

in pattern similarity among participants who showed strong negative intrusion slopes and (by 

correlation) more suppression-induced forgetting. More specifically, we used the median split 

method to divide the data of all participants into two groups (strong suppression group vs. 

weak suppression group) according to their intrusion slope value and compared changes in 

pattern similarity between groups. Our results suggested that both groups did not demonstrate 

differential suppression-induced changes in changes in pattern similarity for all ROIs investigated 

(Table S4.6). 

Figure 4.7 Repeated suppression disengaged lateral prefrontal cortex (LPFC) during subsequent 
memory retrieval. (A) During the final memory test, we found lower activity amplitude in the left LPFC for 
SUPPRESSION ASSOCIATIONS compared to CONTROL ASSOCIATIONS. (B) During the modulation, the 
activity amplitude of the same LPFC cluster decreased over repetitions from the first to fourth run (F [3, 
25]=2.98, p=0.036, ² =0.078), but failed to be significant from the first to the fifth run (F [4, 25]=2.03, 
p=0.09, ² =0.056). 
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Discussion

Active memory retrieval is known to be a powerful memory enhancer, while memory suppression 

tends to prevent unwanted memories from further retrieval. Previous neuroimaging investigations 

of the neural effect of repeated retrieval and suppression revealed corresponding neural 

changes in both univariate activity analysis and multivariate activity patterns analysis. Building 

on these findings, we tested whether similar neural changes can be detected when modulation 

is delayed by 24 hours (i.e., newly acquired memories have undergone the initial consolidation). 

Also, because we collected fMRI data from both the modulation phase and the final memory 

test, this design allowed us to perform dynamic analysis on whether the neural changes seen 

in the final memory test are accompanied by gradual changes during the modulation phase. 

Similar to previous literature (Ferreira et al., 2019), our results demonstrated that repeated 

retrieval of consolidated memories was associated with enhanced episode-unique mnemonic 

representations in the parietal lobe. Critically, our dynamic analysis provided converging evidence 

for the adaption of stronger mnemonic representations in visual processing areas, which were 

involved in the initial perception. Our results suggested that repeated retrieval of newly acquired 

memory and initially consolidated memory may be associated with similar neural changes.

Repeated retrieval strengthened consolidated memories. Behaviorally, our results demonstrate 

that, after an initial delay of 24 hours, repeated retrieval strengthened memories further, indexed 

by higher recall confidence and shorter reaction times. The beneficial effect of retrieval practice 

on the subsequent retrieval is well established (Karpicke & Blunt, 2011; Karpicke & Roediger, 

2008; Karpicke & Roediger III, 2007; A. M. Smith et al., 2016). In our study, memory accuracy 

was already near the ceiling level, and thus we did not find higher recall accuracy of RETRIEVAL 

ASSOCIATIONS compared to CONTROL ASSOCIATIONS. Corroborating the behavioral effect 

during the final memory test, we also found that repeated retrieval of certain memories increased 

their tendency to remain stable in mind during the modulation phase. 

Repeated retrieval is associated with subsequent decreasing activity amplitude. Our whole-brain 

univariate analysis revealed a set of brain regions, including frontal, parietal (mainly precuneus), 

and ventral visual areas that showed decreasing activity amplitude with repeated retrieval. 

Activity changes in frontal and parietal areas have been reported frequently in the literature of 

retrieval-mediated learning/forgetting, but the directions of the reported changes are mixed. 

Some of the reports have found similar univariate decreases in frontal or parietal areas (Kuhl 

et al., 2010; M. Wimber et al., 2011; Maria Wimber et al., 2008), but others reported activity 

increases in these areas (Himmer et al., 2019; Nelson, Arnold, Gilmore, & Mcdermott, 2013; 

G. van den Broek et al., 2016; Wirebring et al., 2015). In addition to the whole-brain analysis, 

our ROI analysis further showed decreased activity in the right angular gyrus. In sum, our study 
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mainly found decreased activity in frontal and parietal areas after repeated retrieval of initially 

consolidated memories. Moreover, decreased activity in ventral visual areas is a novel finding. 

Previous studies usually used words as materials to be remembered (Nelson, Arnold, Gilmore, & 

Mcdermott, 2013; M. Wimber et al., 2011; Maria Wimber et al., 2008; Wirebring et al., 2015), while 

we used pictures. One other study also used pictures and the TNT paradigm but did not reveal 

reliable activity changes for retrieved pictures compared to the controlled pictures (Gagnepain 

et al., 2014). To test the fast-consolidation hypothesis of retrieval-mediated learning  (Antony et 

al., 2017), we further examined changes in hippocampal activity during modulation and final 

test. Similar to a recent report of slow hippocampal disengagement during repeated retrieval 

(Ferreira et al., 2019), we found dynamically decreasing hippocampal activity across repeated 

retrieval for initially consolidated memories. Our results, together with findings of Ferreira and 

colleagues, are consistent with decreasing retrieval-related hippocampal activity over the course 

of consolidation (Takashima et al., 2006, 2009).

Repeated retrieval enhanced episodic-unique cortical representations. Our multivariate pattern 

analysis showed that compared to controls, repeated retrieval led to less similar activity patterns 

in ventral visual areas, and almost all parietal ROIs, including AG, SMG, and precuneus. Using 

a conceptually similar method, Ferreira and colleagues also reported increased item-unique 

activity patterns in parietal regions across two days (Ferreira et al., 2019). Ye and colleagues 

further showed how retrieval practice led to memory updating by differentiating activity patterns 

in the mPFC (Ye et al., 2020). These results together may suggest the interaction between the 

effect of repeated retrieval and episodic-unique neural representations during the fast formation 

of cortical memories. Similar representational dissimilarity analysis has been used to analyze 

patterns of activity during retrieval suppression (Gagnepain et al., 2014). However, after the 

modulation, participants of this study only performed a visual perception task, which measures 

repetition priming instead of a direct measure of memory. Therefore, it is impossible to directly 

compare the trial-by-trial pattern similarity during retrieval between RETRIEVAL and CONTROL 

associations.

One novel aspect of our findings is that after repeated retrieval, we found the decreased 

retrieval-related activity amplitude correlated with enhanced distinctiveness of activity patterns 

in ventral visual areas and precuneus. Our dynamic analysis of these two neural measures 

during modulation and subsequent memory test confirmed further that the neural changes 

observed during the later test are associated with dynamic adaptation of activity amplitude 

and pattern similarity during modulation in the ventral visual areas. However, this is not true 

for the precuneus. In general, this pattern of results is in line with our knowledge about how 

preexisting associative memory shapes brain responses. Prior information about upcoming 

stimuli is often associated with overall lower activity amplitude, a phenomenon termed 
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“expectation suppression”(Summerfield et al., 2008; Summerfield & de Lange, 2014). At the 

same time, underlying activity patterns carry more visual information (de Lange et al., 2018; Kok 

et al., 2012). By correlating these two neural changes in the same regions, our study reported 

a similar phenomenon during episodic memory retrieval. This finding suggests that the inverse 

relationship between overall activity amplitude and pattern-based information representation 

holds not only for low-level perceptual memory but also for episodic memory retrieval. Moreover, 

the correlation between the activity amplitude and pattern similarity may also be understood 

from a “noise correlations” perspective in information processing (Averbeck et al., 2006; M. R. 

Cohen & Kohn, 2011). A recent simultaneous EEG-fMRI study found that decreased alpha/beta 

power, as a potential marker of the reduced noise correlations, was associated with increased 

stimulus-specific activation patterns measured by representation similarity analysis (Benjamin 

James Griffiths et al., 2019). We speculate that retrieval practice might not directly enhance 

memory representations, but affect them by reducing their noise correlations. During retrieval of 

strengthened memories, redundant ongoing neuronal activity (i.e., noise) may be suppressed. 

Therefore, we observed lower overall activity amplitude and, at the same time, reduced “noise 

correlation,” boosting the signal-to-noise ratio. Thus, stimulus-specific neural patterns are 

reinstated with more specificity, demonstrating lower pattern similarity across distinct trials. 

Retrieval suppression inhibited lateral prefrontal activity during subsequent retrieval. For 

SUPPRESSION ASSOCIATIONS, we observed lower LPFC activity amplitude, but relatively 

intact activity patterns in visual areas, parietal lobe, and hippocampus during subsequent 

retrieval. Active memory suppression during retrieval is proposed to be partially supported by 

inhibitory control mechanisms mediated by the lateral prefrontal cortex (Michael C Anderson 

& Hanslmayr, 2014; Guo et al., 2018). During retrieval suppression, LPFC is typically activated 

(M. C. Anderson, 2004; Guo et al., 2018; B. J. Levy & Anderson, 2012), but it showed gradually 

decreasing activity amplitudes from early suppression attempts to the later trials of suppression 

(Brendan E Depue et al., 2007). Consistent with this pattern, we found a similar decrease in LPFC 

activity amplitude across suppression attempts during the modulation phase and lower activity 

amplitude during the subsequent retrieval. Together with the trial-by-trial intrusion frequency 

rating during modulation, this activity decrease across suppression attempts may suggest less 

inhibitory control demands when suppressing increasingly weakened memories. The observed 

reduction in LPFC activity during the subsequent retrieval might be a long-lasting effect of this 

reduced activity amplitude and suggests that modulated cognitive control allocation hampers 

retrieval. Another interesting observation is that we found weak evidence for suppression-induced 

changes in pattern reinstatement during the final memory test. Even though the involvement 

of the LPFC-hippocampal circuit in suppression has been examined (Michael C Anderson 

& Hanslmayr, 2014; Guo et al., 2018), the changes in neural representations of individual 

memory trace underlying suppression-induced forgetting remain less well studied. One study 
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measured the effect of retrieval suppression on newly acquired visual memories via cortical 

inhibition (Gagnepain et al., 2014) and this study found that retrieval suppression reduced 

activity amplitude in the fusiform gyrus compared to retrieval, but the pattern was opposite to the 

one found in the lateral occipital complex. Effective connectivity and pattern similarity analysis 

suggested that top-down control mediated by the middle frontal gyrus suppressed perceptual 

memory traces in the visual cortex. Our study did find the comparable suppression-induced 

changes in activity amplitude but not mnemonic representations in the visual cortex. This may 

relate to the modest behavioral effects or less labile consolidated memory traces. Future studies 

with stronger suppression-induced forgetting effects can directly compare activity patterns 

between still-remembered associations and forgotten associations. 

Limitations. Our study has a few limiting aspects that should be mentioned. Firstly, given that we 

only found a modest effect of suppression-induced forgetting, it is difficult to interpret repeated 

suppression-related fMRI results. There are at least two possible reasons for this modest effect: 

first, due to extensive training during encoding and/or the nature of our picture-location tasks, 

recall accuracy for all conditions was close to the ceiling level. Second, the suppression-induced 

forgetting effect is much smaller when memories have been consolidated (Y. Liu et al., 2016). 

Thus, in line with previous studies, suppression-induced forgetting may not have emerged as the 

group level (Gagnepain et al., 2017; Y. Liu et al., 2016). Nevertheless, we replicated two findings, 

confirming that our memory suppression modulation was still effective. First, when unwanted 

memories were suppressed repeatedly, their tendency to intrude was reduced during the TNT 

phase (Benoit et al., 2015; Gagnepain et al., 2017; Hellerstedt et al., 2016; B. J. Levy & Anderson, 

2012; van Schie & Anderson, 2017). Second, the extent of this reduction (i.e., intrusion slope) 

correlated with subsequent suppression-induced forgetting effect across participants (B. J. Levy 

& Anderson, 2012). Given this correlation, we further compared suppression-induced neural 

changes between a strong and a weak suppression group, but still did not find an effect of 

suppression on mnemonic representations. These results may suggest that even for participants 

who showed suppression-induced forgetting, the underlying mnemonic representations remain 

intact. A second potential limitation of our study is that we only found the effect of repeated 

retrieval on trial-by-trial pattern similarity instead of the more direct measure of memory 

reactivation, such as decoding accuracy or decision value (Linde-Domingo et al., 2019). 

Therefore, the relationship between the reduction in univariate activity and enhanced multivariate 

representation can be interpreted from two different perspectives. On the one hand, it can be 

explained as the enhanced unique cortical memory representations. On the other hand, the 

reduction in across-item pattern similarity could be due to factors, for example, the reduced 

memory unrelated “noise correlations”. It is noticeable that our pattern reinstatement analysis 

demonstrated that, based on activity patterns in our ROIs, the individual picture can be decoded 

when the classifier was trained on the localizer data (day1) before testing it on the final memory 
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test (day2). This reinstatement laid the groundwork for our pattern similarity calculation because 

there is evidence that these activity patterns used in the variability analysis carry item-specific 

mnemonic information during retrieval. However, when we divided all associations into three 

groups (i.e., retrieval, suppression, and control), we did not find the evidence for the idea that 

retrieval or suppression can separately modulate decoding accuracies or d values, but that 

all three kinds of associations showed comparable decodability during retrieval. This result 

ruled out the possibility that could fully explain the differences in our pattern similarity measure. 

These results may suggest that decoding accuracies or d values used here were not sensitive 

enough after initial consolidation, because perceptual information might already be based on 

the transformed representation (Xiao et al., 2017). In addition, decoding outcomes and pattern 

similarity may associate with different aspects of mnemonic representations. Sensitive decoding 

depends on the reinstatement of the original representation related to the perceptual input, while 

pattern similarity reflects episode-unique activity patterns across retrieved “mental images”. 

Enhanced episode-unique representations after repeated retrieval, particularly in the visual 

processing areas, support the following notion. Given that our memory cues (i.e., highlighted 

locations) are visually very similar, the changes in pattern similarity in visual areas are more likely 

to be the result of enhanced mnemonic reinstatements instead of variability induced by visual 

features of memory cues. Thirdly, when using a conservative correction for the number of ROIs 

tested, contrasts of parietal areas only showed only considerable trends toward significance, 

although the individual test is significant. We believe that trends in parietal areas could be caused 

by the definitions of our ROIs are based on the coarse atlas at the group level. That is to say, 

for each participant, maybe only part of the parietal ROIs is involved in the retrieval processing.

Conclusion. Taken together, our study probed the effects of repeated retrieval and suppression 

on initially consolidated memories. We showed that repeated retrieval dynamically reduces the 

activity amplitude in the visual cortex and hippocampus while enhances the distinctiveness of 

activity patterns in the visual cortex and parietal lobe. Moreover, reduction in activity amplitude 

correlated with the enhancement of episode-unique mnemonic representations in visual areas 

and precuneus. By contrast, repeated suppression, as done here, was associated with the 

reduced lateral prefrontal activity, but intact mnemonic representations. These findings extended 

our understanding of neural changes underlying memory modulations from newly acquired 

memories to initially consolidated memories and suggested that active retrieval may strengthen 

episode-unique information neocortically after initial encoding and also consolidation.
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Supplementary Material for 
Probing the neural dynamics of mnemonic 

representations after the initial consolidation

This file includes:

Supplementary Text

Figure S4.1-S4.10

Table S4.1-S4.6

1. Robustness of neural reinstatement of individual memory in the ventral visual cortex

1.1 Effect of arbitrary thresholds for cluster formation on the subsequent classifications

During the one-sample test on all of the classification accuracy maps resulting from the 

searchlight analyses, we used the arbitrary threshold (uncorrected p voxel<0.001) for the cluster 

formation and all of the following classification analyses were based on thresholded voxels. 

To account for the effect of arbitrary thresholds during the cluster formation on the following 

analyses, we used the two additional thresholds (uncorrected p voxel=0.01 and 0.05) to 

identify picture-sensitive voxels. Repeating the cross-participant, within-task classification and 

cross-participant, cross-task classification, we confirmed that the classifications could also be 

performed based on picture-sensitive voxels under other thresholds (0.01 and 0.05)(Figure S2)

1.2 Possibility of category-specific classifications.

Beyond picture-specific classifications, we investigated the possibility of category-specific 

classifications based on brain activation patterns. All of the pictures to be associated can be 

categorized as one of the four following groups: animal, human, object, or location. Similarly, 

we localised category-sensitive voxels within the ventral visual cortex (VVC) (Figure S4.4D) and 

confirmed that these voxels also carry category-specific information during perception (mean 

accuracy=73.5%, SD=8.6%, one-sample t-test: t=29.41, p<0.001, Figure S4.4E). Critically, 

activation patterns of these category-sensitive voxels during memory retrieval could enable 

cross-participant, cross-task classification of categories of the memory (mean accuracy=44.4%, 

SD=10.1%, one-sample t-test: t=10.03, p<0.001, Figure S4.3).

2. Comparisons of evidence for memory reactivation between RETRIEVAL, SUPPRESSION, 

and CONTROL associations.

Our pattern reinstatement analysis demonstrated that activity patterns during perception 

were reinstated during memory retrieval in the visual processing areas, parietal lobe, and 

hippocampus lob after 24 hours. Then, we investigated whether different modulation (i.e. 

retrieval and suppression) could modulate the memory reactivation process, indexed by different 

decoding outcomes for different memory associations. We used two decoding outcomes as 
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the neural evidence for memory reactivation: [1] decoding accuracy. We analyzed predicted 

labels generated by the Support Vector Classification (SVC) classifier for different kinds of 

associations separately and calculated the average decoding accuracies of RETRIEVAL, 

SUPPRESSION, and CONTROL associations for each participant. The higher decoding accuracy 

for RETRIEVAL associations compared to CONTROL associations may reflect stronger direct 

memory reactivations induced by repeated retrieval. [2] decision value (d value)(Linde-Domingo 

et al., 2019). During trial-by-trial classification, together with predicted labels, we also generated 

the distance to the hyper-plane using the “decision_function” implemented in the SVC function. 

This distance measure indicates how confident the classifier was about generated predicted 

labels at the single-trial level. Raw d values could be either positive or negative. To use d values 

for further analysis, we transformed each raw d value to its absolute value, resulting in d value 

that larger value always reflects more confident classification. Then we calculated the averaged 

values for each kind of association for each participant. Finally, we compared the evidence for 

memory reactivation (i.e., accuracy and d value) between different associations. As shown in 

Table S4.1-S4.2, for all ROIs investigated, we did not find the effect of modulation on decoding 

outcomes. 

3. Robustness of changes in activity pattern similarity for RETRIEVAL ASSOCIATIONS.

We performed three control analyses to assess the robustness of retrieval-induced increase 

in VVC’s activity pattern variability for RETRIEVAL ASSOCIATIONS. Firstly, we investigated if the 

observed change in activity pattern variability only exists for remembered associations. We 

reanalyzed the activity pattern variability for all associations without considering the individual 

differences in the objective memory performance, and also found the higher activation pattern 

variability in the VVC for RETRIEVAL ASSOCIATIONS compared to CONTROL ASSOCIATIONS 

(t=3.34, p=0.002; Figure S4.5B). Then, we examined if the observed variability change depends 

on the arbitrary threshold (uncorrected p voxel<0.001) used for picture-sensitive voxels selection. 

Results showed that increased activity pattern variability for RETRIEVAL ASSOCIATIONS could 

be also detected under two different thresholds (p voxel<0.01, t=2.4, p=0.023; p voxel<0.05, 

t=2.41, p=0.022; Figure S4.6). Finally, we further localized category-sensitive voxels within the 

VVC (Figure S4.7B) and calculated the activity pattern variability for these voxels separately for 

RETRIEVAL ASSOCIATIONS and CONTROL ASSOCIATIONS. The same contrast also revealed 

higher activation pattern variability (lower pattern similarity) for RETRIEVAL ASSOCIATIONS 

compared to the CONTROL ASSOCIATIONS (t=2.5, p=0.018).

4. Test the univariate and pattern similarity analysis in a control region

In the main text, we already showed that repeated retrieval reduced activity amplitude, but 

enhanced the distinctiveness of activity patterns (measured by lower pattern similarity) in the 

ventral visual cortex and parietal areas. However, all of the investigated ROIs locate within the 

brain network where memory contents are reinstated during memory retrieval. 
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Here, we performed a series of similar analyses to a control region that also showed a comparable 

univariate reduction but would not be expected to represent memory contents. We defined the 

control region (i.e., left precentral gyrus) based on the following steps: (1) we made a mask of 

left precentral gyrus based on the AAL atlas; (2) we performed the whole-brain contrast between 

retrieval associations and baseline associations during the final memory test, and saved voxels 

with Z>2 as a map for relative liberal univariate effects; (3) we generated the final mask below by 

overlapping AAL-based left precentral gyrus and the map of univariate effects (Figure S4.6A). 

Then, we performed the pattern reinstatement analysis to examine whether activation patterns 

of this area represent memory content during retrieval. Even for the category-based decoding, 

which requires less information than the item-based decoding, activation patterns of this area 

cannot be used to classify memory contents (group mean accuracy=27%) (Figure S4.6B). 

Next, we performed the univariate contrast and pattern similarity contrast of the control region 

and found the univariate activity reduction (t=-3.56, p=0.001) and the de-correlation effect 

(t=-3.38, p=0.002) for the retrieval associations compared to baseline associations. Finally, 

because we found the de-correlation effect during the final memory test, we further examined 

the potential gradual change of the de-correlation effect during the modulation. Unlike the VVC, 

the control region did not show the modulation-specific reduction in pattern similarity during the 

modulation phase (Figure S4.6C).

In sum, our control analyses cannot fully rule out the possibility that “noise correlations” could 

play a role in our pattern similarity analysis, but these results highlighted the advantages of our 

methods and study design. We showed a series of evidence from both modulation and final 

memory test phase to support the conclusion of dynamic adaptive visual memory representations 

in the VVC, but not control region.
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Figure S4.1 Trial structure with timing for different experimental phases. (A) Trial structure of the 
encoding phase. After the fixation (0.5s), the entire map was presented (2.5s), and then one specific location 
was highlighted (BLUE) for 3s. Finally, the enlarged location was presented together with one picture for 6s. 
A constant ITI of 1 s was used at the end of each encoding trial. (B) Trial structure of the modulation phase. 
There are two kinds of trials during this phase (i.e., Think trial and No-Think trial) with the same trial structure. 
After the fixation (0.5s), one specific location was highlighted for 3s as the memory cue. According to the 
color of the frame (GREEN: Think trial; RED: No-Think trial) around the location, participants were instructed 
to actively retrieve associated pictures in mind (“think”) or suppress the tendency to recall them (“no-think”). 
Then, participants had 3s to report their experience during the cue presentation using one of the four options 
(i.e., Never (N), Sometimes (S), Often (O), and Always (A)). After the rating, a fixation appeared for 1-4s 
(mean=2s) as the Inter-Trial Interval (ITI). (C) Trial structure of the final memory test phase. After the fixation 
(0.5s), one specific location was highlighted (BLUE) for 3s, and participants were instructed to retrieve the 
associated picture in their mind. Then, they rated the confidence of that memory using one of the four options 
(i.e., No memory (No), low confidence (L), middle confidence (M), and high confidence (H), and the category 
of that picture (Animal (A), Human (H), Scene (S), and Object (O)). For each rating, a maximum response 
window of 3.5s was given. In the end, a fixation appeared for 1-4s (mean=2s) as the Inter-Trial Interval (ITI).

 



144 | 

CHAPTER 4

Figure S4.2 Memory performance during typing test immediately after study and 24 hours later. During 
the immediate typing test (day1), 88.01% of the associated pictures were described correctly (SD= 10.87%; 
range from 52% to 100%). Twenty-four hours later, participants could recall 82.15% of all associations (SD = 
13.87%; range from 50% to 100%). Although we observed less accurate memory 24 hours later (t(26) =4.73, 
p<0.001, Cohen’s d=0.912), participants could still remember most location-picture associations well.
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Figure S4.3 Effect of different thresholds during cluster formation on the subsequent classifications. 
(A) Picture-sensitive voxels within the ventral visual cortex identified by the searchlight method (uncorrected 
pvoxel<0.001). (B) Picture-sensitive voxels (uncorrected pvoxel<0.001) could enable the cross-participant 
picture classification during perception (mean accuracy=61.88%, SD=17.71%). (C) The same classifier can 
decode the memory contents based on activity patterns of Picture-sensitive voxels (uncorrected pvoxel<0.001) 
during retrieval (mean accuracy=43.13%, SD=16.52%). (D) Picture-sensitive voxels within the ventral 
visual cortex identified by the searchlight method (uncorrected pvoxel<0.01). (E) Picture-sensitive voxels 
(uncorrected pvoxel<0.01) could enable the cross-participant picture classification during perception (mean 
accuracy=75.54%, SD=20.42%). (F) The same classifier can decode the memory contents based on activity 
patterns of Picture-sensitive voxels (uncorrected pvoxel<0.01) during retrieval (mean accuracy=57.56%, 
SD=16.76%). (G) Picture-sensitive voxels within the ventral visual cortex identified by the searchlight 
method (uncorrected pvoxel<0.05). (H) Picture-sensitive voxels (uncorrected pvoxel<0.05) could enable the 
cross-participant picture classification during perception (mean accuracy=78.24%, SD=20.88%). (I) The 
same classifier can decode the memory contents based on activity patterns of Picture-sensitive voxels 
(uncorrected pvoxel<0.05) during retrieval (mean accuracy=63.27%, SD=17.90%). Red line represents the 
95th percentile of the accuracy within 1000 randomly label-shuffled null distribution.
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Figure S4.4 Comparison between picture-specific classification and category-specific classification. 
(A) Picture-sensitive voxels within the ventral visual cortex identified by the searchlight method. (B) 
Picture-sensitive voxels could enable the cross-participant picture classification during perception. (C) 
Activation patterns of picture-sensitive voxels during memory retrieval, together with the classifier for different 
pictures, could enable cross-participant, cross-task classification of memory contents. (D) Category-sensitive 
voxels within the ventral visual cortex identified by the searchlight method. (E) Category-sensitive voxels could 
enable the cross-participant picture classification during perception (mean accuracy=69.13%, SD=9.6%). 
(F) Activation patterns of category-sensitive voxels during memory retrieval, together with the classifier for 
different categories, could enable cross-participant, cross-task classification of memory contents (mean 
accuracy=44.29%, SD=8.9%). Redline represents the 95th percentile of the accuracy within 1000 randomly 
label-shuffled null distribution.
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Figure S4.5 Decoding accuracies estimated by the 3-fold cross-validation across all ROIs. (A) Density 
estimation of decoding accuracies for each ROI. ROIs are ranked based on mean accuracies from less 
accurate to more accurate classification. (B) Distributions of decoding accuracies from 1000 shuffled 
predictive models. Hipp=Hippocampus; SMG=supramarginal gyrus;  AG=angular gyrus; Pre= Precuneus; 
VVC= Ventral Visual Cortex.
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Figure S4.6 Results from the control region (i.e., left precentral gyrus). (A) Visualization of the mask 
of the control region. (B) Comparison between individual category decoding accuracies with theoretical 
chance level and 95th of the null distribution. (C) Retrieval and suppression modulate pattern similarity of the 
control region during the modulation phase in a similar way.

Figure S4.7 Similar spatial pattern between areas showed reduced activity amplitude and 
picture-sensitive voxels within the ventral visual cortex. (A) Brain regions showed less activation when 
retrieved  RETRIEVAL ASSOCIATIONS compared to CONTROL ASSOCIATIONS. Compared to CONTROL 
ASSOCIATIONS, retrieval of RETRIEVAL ASSOCIATIONS was associated with less activation in the medial 
occipital cortex, fusiform gyrus, supplementary motor area (SMA), anterior/medial cingulate cortex 
(MCC), precuneus, bilateral insula, and bilateral inferior frontal gyrus (IFG) (voxelwise uncorrected p<0.001, p 

FWE-cluster<0.05). (B) Searchlight analysis identified picture-sensitive voxels within the ventral visual cortex.
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Figure S4.8 Activity pattern variability analyses using all associations or only remembered associations. 
(A) Using only the activation patterns of remembered associations, we found higher activation pattern 
variability (lower pattern similarity) in the VVC for RETRIEVAL ASSOCIATIONS compared to the CONTROL 
ASSOCIATIONS (t=2.3, p=0.029). (B) Using activation patterns of all associations, we also found the higher 
activation pattern variability in the VVC for RETRIEVAL ASSOCIATIONS (t=3.34, p=0.002).

Figure S4.9 Activity pattern variability analyses based on different cluster-formation thresholds. (A) 
Picture-sensitive voxels within the ventral visual cortex identified by the searchlight method (uncorrected 
pvoxel<0.001). (B) Based on the VVC region-of-interest formed by threshold p<0.001, we found higher 
activation pattern variability (lower pattern similarity) in the VVC for RETRIEVAL ASSOCIATIONS compared to 
the CONTROL ASSOCIATIONS (t=2.3, p=0.029). (C) Picture-sensitive voxels within the ventral visual cortex 
identified by the searchlight method (uncorrected pvoxel<0.01). (D) Based on the VVC region-of-interest 
formed by threshold p<0.01, we also found higher activation pattern variability (lower pattern similarity) in 
the VVC for RETRIEVAL ASSOCIATIONS compared to the CONTROL ASSOCIATIONS (t=2.4, p=0.023). (E) 
Picture-sensitive voxels within the ventral visual cortex identified by the searchlight method (uncorrected 
pvoxel<0.05). (F) Based on the VVC region-of-interest formed by threshold p<0.01, we also found higher 
activation pattern variability (lower pattern similarity) in the VVC for RETRIEVAL ASSOCIATIONS compared to 
the CONTROL ASSOCIATIONS (t=2.41, p=0.022).
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Figure S4.10 Activity pattern variability analyses based on picture-sensitive voxels or category-sensitive 
voxels. (A) Picture-sensitive voxels within the ventral visual cortex identified by the searchlight method. (B) 
Based on activation patterns of Picture-sensitive voxels within the ventral visual cortex, we found higher 
activation pattern variability (lower pattern similarity) in the VVC for RETRIEVAL ASSOCIATIONS compared 
to the CONTROL ASSOCIATIONS (t=2.3, p=0.029). (C) Category-sensitive voxels within the ventral visual 
cortex identified by the searchlight method. (D) Based on activation patterns of Category-sensitive voxels 
within the ventral visual cortex, we also found higher activation pattern variability (lower pattern similarity) 
in the VVC for RETRIEVAL ASSOCIATIONS compared to the CONTROL ASSOCIATIONS (t=2.5, p=0.018).



 | 151

Probing the neural dynamics of mnemonic representations after the initial consolidation

4

Table S1 Comparisons of cross-participanta decoding accuracies between different modulations

Region of Interest 
(ROI)

Retrieval 
association 
(%)
(mean(SD))

Suppression 
association 
(%)
(mean(SD))

Control
association 
(%)
(mean(SD))

Chi-squareb pb

Ventral Visual Cortex 43.0(22.2) 43.3(22.1) 45.0(21.7) 0.05 0.97

Left hippocampus 7.9(8.8) 6.5(8.7) 6.6(7.3) 0.72 0.69

Right hippocampus 7.0(6.9) 6.8(8.0) 5.9(7.3) 0.08 0.95

Left AG 8.4(8.0) 9.6(10.2) 10.5(12.4) 2.11 0.34

Right AG 10.6(11.2) 10.9(11.7) 11.3(14.9) 0.44 0.80

Left SMG 8.5(10.3) 7.6(8.2) 7.7(9.5) 0.09 0.95

Right SMG 16.0(17.2) 10.4(12.9) 15.6(16.2) 2.67 0.26

Left precuneus 17.0(13.1) 17.5(14.1) 13.7(8.5) 0.63 0.72

Right precuneus 17.8(12.1) 16.3(13.0) 22.3(9.7) 5.36 0.06

a. Decoding outputs presented in this table were calculated using the cross-participant approach: we 
performed three-fold cross-validation. Pattern localization data of the 2/3 participants (i.e., training sample) 
were used to train classifiers and final memory test data of the remaining 1/3 participants (i.e., testing 
sample) were used to probe memory reactivation; b. Statistical values (i.e., Chi-square values) and p values 
were generated by the Friedman Test. The Friedman Test is the non-parametric equivalent to the one-way 
ANOVA with repeated measures used to test the main effect of modulation condition on decoding outputs. 
SMG=supramarginal gyrus;  AG=angular gyrus.
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Table S2 Comparisons of cross-participanta decoding decision value (d) between different modulations

Region of Interest 
(ROI)

Retrieval 
association 
(d)
(mean(SD))

Suppression 
association 
(d)
(mean(SD))

Control
association 
(d)
(mean(SD))

Chi-squareb pb

Ventral Visual Cortex 38.89(5.11) 39.83(5.17) 39.49(6.51) 1.18 0.55

Left hippocampus 27.87(4.17) 27.01(3.78) 26.86(4.11) 0.96 0.61

Right hippocampus 27.96(4.34) 26.36(3.93) 26.99(3.95) 0.96 0.61

Left AG 26.53(7.49) 27.33(7.29) 26.54(7.12) 0.96 0.61

Right AG 28.55(7.84) 27.23(6.88) 27.37(7.75) 0.22 0.89

Left SMG 27.18(6.19) 27.56(7.18) 27.78(6.36) 0.22 0.89

Right SMG 32.21(7.45) 30.86(6.50) 31.94(6.84) 1.55 0.45

Left precuneus 30.20(6.55) 30.55(7.19) 31.60(4.99) 2.29 0.31

Right precuneus 30.80(4.97) 30.06(7.08) 31.56(4.15) 3.18 0.20

a. Decoding outputs presented in this table were calculated using the cross-participant approach: we 
performed three-fold cross-validation. Pattern localization data of the 2/3 participants (i.e., training sample) 
were used to train classifiers and final memory test data of the remaining 1/3 participants (i.e., testing 
sample) were used to probe memory reactivation; b. Statistical values (i.e., Chi-square values) and p values 
were generated by the Friedman Test. The Friedman Test is the non-parametric equivalent to the one-way 
ANOVA with repeated measures used to test the main effect of modulation condition on decoding outputs. 
SMG=supramarginal gyrus;  AG=angular gyrus.
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Table S3 Comparisons of within-participanta decoding accuracies between different modulations

Region of Interest 
(ROI)

Retrieval 
association 
(%)
(mean(SD))

Suppression 
association 
(%)
(mean(SD))

Control
association 
(%)
(mean(SD))

Chi-squareb pb

Ventral Visual Cortex 55.9(28.6) 53.0(28.4) 53.0(26.7) 0.84 0.65

Left hippocampus 3.0(4.7) 3.8(6.3) 2.7(4.0) 1.21 0.54

Right hippocampus 1.9(3.3) 2.7(4.0) 3.1(5.8) 0.64 0.72

Left AG 5.6(6.0) 4.8(6.8) 5.0(8.2) 0.30 0.86

Right AG 10.5(9.1) 10.5(12.6) 10.6(11.6) 0.15 0.92

Left SMG 7.8(11.9) 5.0(8.7) 7.2(9.0) 2.49 0.28

Right SMG 4.4(6.4) 3.6(5.7) 3.9(5.2) 0.25 0.87

Left precuneus 11.6(13.4) 13.9(16.2) 13.1(12.5) 0.62 0.73

Right precuneus 9.2(9.8) 13.0(13.8) 8.7(11.0) 1.37 0.50

a. Decoding outputs presented in this table were calculated using the within-participant approach: classifiers 
were trained on pattern localizer data of one particular participant and tested on his/her retrieval data; b. 
Statistical values (i.e., Chi-square values) and p values were generated by the Friedman Test. The Friedman 
Test is the non-parametric equivalent to the one-way ANOVA with repeated measures used to test the main 
effect of modulation condition on decoding outputs. SMG=supramarginal gyrus;  AG=angular gyrus.
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Table S4 Comparisons of within-participanta decoding decision value (d) between different modulations

Region of Interest 
(ROI)

Retrieval 
association 
(d)
(mean(SD))

Suppression 
association 
(d)
(mean(SD))

Control
association 
(d)
(mean(SD))

Chi-squareb pb

Ventral Visual Cortex 40.64(7.21) 40.67(6.20) 40.52(7.10) 0.07 0.96

Left hippocampus 25.30(4.10) 26.96(4.69) 24.42(3.80) 1.40 0.49

Right hippocampus 23.91(3.97) 23.67(3.55) 26.94(5.02) 2.74 0.25

Left AG 26.99(5.20) 29.04(5.05) 28.42(6.23) 3.18 0.20

Right AG 31.24(6.25) 30.82(7.45) 31.57(5.25) 0.22 0.89

Left SMG 28.83(6.19) 27.68(6.39) 28.57(4.85) 0.96 0.61

Right SMG 30.23(4.72) 30.54(4.19) 30.51(6.00) 0.29 0.86

Left precuneus 32.58(7.08) 32.18(6.38) 31.40(7.26) 1.40 0.49

Right precuneus 31.11(6.81) 30.65(7.64) 30.68(5.94) 0.51 0.77

a. Decoding outputs presented in this table were calculated using the within-participant approach: classifiers 
were trained on pattern localizer data of one particular participant and tested on his/her retrieval data; b. 
Statistical values (i.e., Chi-square values) and p values were generated by the Friedman Test. The Friedman 
Test is the non-parametric equivalent to the one-way ANOVA with repeated measures used to test the main 
effect of modulation condition on decoding outputs. SMG=supramarginal gyrus;  AG=angular gyrus.
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Table S5 Brain regions showed less activation when retrieved RETRIEVAL ASSOCIATIONS compared 
to CONTROL ASSOCIATIONS.

Brain region Hemisphere Peak MNI coordinates Cluster size 
(mm3)

Cluster mean

IFG L -36 42 8 184 -3.23

Left DLPFC L -46 46 6 224 -3.20

Precuneus L -8 -80 46 360 -3.23

Precentral gyrus L -38 2 38 3024 -3.56

Insula R 32 26 -6 9528 -3.61

Insula L -30 26 -2 10936 -3.69

ACC/MCC/SMA R/L 2 28 48 11712 -3.68

Medial occipital cortex/
Fusiform gyrus

R/L 32 -46 -8 71664 -3.66

IFG= Inferior Frontal Gyrus; DLPFC= Dorsolateral Prefrontal Cortex; ACC= Anterior Cingulate Cortex; 
MCC= Middle Cingulate Cortex; SMA= Supplementary Motor Area
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Table S6 Comparison of pattern variability change between participants who showed strong and weak 
suppression 

Region of Interest 
(ROI)

Pattern Variability 
change (Strong)
(mean (SD))

Pattern Variability 
change (Weak)
(mean (SD))

t p d

Ventral Visual 
Cortex

-0.02(0.06) -0.006(0.08) -0.644 0.526 -0.253

Left hippocampus -0.005(0.02) 0.009(0.01) -0.612 0.546 -0.246

Right hippocampus -0.0005(0.03) -0.0004(0.02) -0.01 0.99 -0.005

Left AG -0.015(0.04) 0.013(0.06) -1.288 0.21 -0.505

Right AG -0.03(0.09) 0.02(0.08) -1.57 0.129 -0.616

Left SMG -0.007(0.04) -0.015(0.05) 0.4 0.693 0.157

Right SMG -0.012(0.06) -0.011(0.04) -0.03 0.973 -0.013

Left precuneus -0.02(0.04) 0.01(0.05) -1.82 0.073 -0.734

Right precuneus -0.028(0.06) 0.002(0.04) -1.35 0.189 -0.53

Pattern Variability change=pattern variability of suppression associations minus variability of control 
associations; Strong=the group of participants who showed stronger suppression (i.e. more negative 
suppression slope); weak= the group of participants who showed weaker suppression (i.e. less negative 
suppression slope); SMG=supramarginal gyrus;  AG=angular gyrus.
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Chapter 5
Common neural and transcriptional correlates 

of inhibitory control underlie emotion regulation 
and memory control

This chapter is based on:

Liu. W., Peeters, N., Fernandez, G., & Kohn, N. (2020). Common neural and transcriptional 

correlates of inhibitory control across emotion, memory, and response inhibition. Soc. Cogn. 

Affect. Neurosci.
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Abstract 

Inhibitory control is crucial for regulating emotions, and may also enable memory control. However, 

evidence for their shared neurobiological correlates is limited. Here, we report meta-analyses of 

neuroimaging studies on emotion regulation, or memory control, and link neural commonalities 

to transcriptional commonalities using the Allen Human Brain Atlas (AHBA). Based on 95 fMRI 

studies, we reveal a role of the right inferior parietal lobule embedded in a frontal-parietal-insular 

network during emotion and memory control, which is similarly recruited during response 

inhibition. These co-activation patterns also overlap with the networks associated with 

“inhibition”, “cognitive control”, and “working memory” when consulting the Neurosynth. Using 

the AHBA, we demonstrate that emotion and memory control-related brain activity patterns 

are associated with transcriptional profiles of a specific set of “inhibition-related” genes. Gene 

ontology enrichment analysis of these “inhibition-related” genes reveal associations with the 

neuronal transmission and risk for major psychiatric disorders as well as seizures and alcoholic 

dependence. In summary, this study identified a neural network and a set of genes associated 

with inhibitory control across emotion regulation and memory control. These findings facilitate 

our understanding of the neurobiological correlates of inhibitory control and may contribute to 

the development of brain stimulation and pharmacological interventions.

Key Words: emotion regulation; memory control; inhibitory control; gene expression; 

transcriptional network
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Introduction

One of the most influential cognitive theories of emotion regulation proposes that it is primarily 

supported by inhibitory control (Gross & Thompson, 2007; Ochsner & Gross, 2005). A potentially 

related cognitive process, memory control, is defined as an ability to actively reduce the 

accessibility of memories. Memory control is also thought to be supported by inhibitory control 

(Michael C. Anderson & Hanslmayr, 2014; Michael C Anderson, 2004; Michael C Anderson 

& Green, 2001). Recently, Engen and Anderson summarized the conceptual link between 

emotion regulation and memory control and raised the question of whether there is a common 

neurobiological mechanism supporting these two processes (Engen & Anderson, 2018). Here, 

we set out to empirically demonstrate the neurobiological commonalities between the two 

processes by first analyzing fMRI data and then linking neuroimaging findings with post mortem 

gene expression data.

The idea that inhibitory control, as the fundamental cognitive process, supports other higher-level 

processes such as emotion regulation and memory control is supported by behavioral and 

neural evidence. Behaviorally, a positive correlation between emotion regulation and memory 

control performances has been found (B. E. Depue et al., 2016). Human neuroimaging results 

showed overlapping recruitment of right superior medial frontal gyrus (rSFG) and right inferior 

frontal gyrus (rIFG) in both emotion regulation (Buhle et al., 2014; Kohn et al., 2014; Ochsner 

et al., 2002) and memory control (Michael C Anderson, 2004; Guo et al., 2018). Beyond these 

frontal regions, the parietal cortex is another candidate region that may play a critical role in 

both emotion regulation and memory control. Starting from the idea of the multiple-demand 

system in the brain (Duncan, 2010), both the evidence from task-fMRI (Fedorenko et al., 2013) 

and resting-state fMRI (Dosenbach et al., 2007; Power et al., 2011) suggest that a fronto-parietal 

network supports the initiation of top-down control and control adjustment in response to 

task-goals and feedbacks.

No previous formal meta-analysis of human neuroimaging studies has investigated the neural 

commonalities between emotion regulation and memory control to pinpoint the overlap in 

inhibitory control, although common neural correlates between emotion regulation or memory 

control with response inhibition tasks (e.g., Stop-signal and Go/Nogo task) have been investigated 

in two recent meta-analyses (Guo et al., 2018; Langner et al., 2018). Using activation likelihood 

estimation (ALE), we aim to demonstrate that emotion regulation and memory control evoke 

activation of similar brain regions with a spatial pattern that is similar to the activation of typical 

response inhibition paradigms, including Stop-signal and Go/Nogo tasks. Moreover, beyond 

overlapping regional brain activity, we also are interested in overlapping co-activation patterns of 

associated brain regions. We used meta-analytic connectivity modeling (MACM) to test whether 



162 | 

CHAPTER 5

these brain regions act as an interconnected functional network. We expected to find a similar 

set of co-activated brain regions that are associated with both emotion regulation and memory 

control, defining a core “inhibition-related” network. 

Identifying an underlying neural network is relevant for potentially brain stimulation interventions 

including but not limited to Transcranial Magnetic Stimulation (TMS) and Transcranial Direct 

Current Stimulation (tDCS). However, further dissection of molecular underpinnings is 

necessary to expand our understanding of inhibition control, which in turn may pave the way for 

pharmacological interventions. Therefore, we reasoned whether emotion regulation and memory 

control are not only related to a common neural network defined by activity and connectivity, but 

also by associated similarities in spatial transcriptional profiles. Conventional imaging-genetic 

methods including candidate gene methods and genome-wide association approaches cannot 

reveal the relationship between localized gene transcription and task-related brain activity, even 

though they already showed the association between multiple common gene variants and 

neuroimaging measures (Elliott et al., 2018; Hariri et al., 2002). Thus, to explore the relationship 

between spatial transcriptional profiles and emotion regulation or memory control-related 

brain activity, we adopted a recently developed approach to associate spatial maps of gene 

expression in post-mortem brain tissues with brain activation measures (K. Gorgolewski et al., 

2014; X. Kong et al., 2017). Spatial pattern analysis of gene expression maps of the Allen Human 

Brain Atlas (AHBA) together with neuroimaging revealed fundamental features of transcriptional 

t , & Fulcher, 2018) and related disruptions in 

brain disorders (Grothe et al., 2018; McColgan et al., 2018; Romero-Garcia et al., 2019; Romme 

et al., 2017). However, the correspondence between spatial transcriptional profiles and neural 

functionality has not yet provided full insight into how genetic correlates are linked to core 

cognitive abilities (e.g., inhibitory control in this study). Based on the assumption that spatial 

transcriptional profiles not only co-vary with the connectional architecture but also support the 

task-evoked, synchronous brain activity (Berto et al., 2018; K. Gorgolewski et al., 2014; X. Kong 

et al., 2017; Shine et al., 2019) we expected to find similar spatial transcriptional profiles between 

emotion regulation, memory control, and response inhibition. 

To investigate the neural and transcriptional commonality of emotion regulation and memory 

control, we combined task fMRI data, neuroimaging meta-analytic approaches, and postmortem 

gene-expression data. First, we used the ALE method to generate the task activation map for 

each paradigm of interest (e.g., emotion regulation or memory control) based on 95 published 

task fMRI studies with in total 1995 healthy participants (Figure 5.1A). Then, we used the brain 

regions identified by the ALE as seed regions and estimated the meta-analytic connectivity 

map (or co-activation map), using information from BrainMap (Figure 5.1B). And to explore 

the behavioral relevance of these findings, we examined the associations of these co-activation 
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patterns in a data-driven way via Neurosynth with behavioral domains (Figure 5.1C). Next, we 

calculated the spatial association between task activation maps and human gene expression 

maps to identify their common spatial transcriptional profiles (Figure 5.1D). Finally, we performed 

a systematic and integrative analysis of the resulting gene list to gain an in-depth understanding 

of putative biological functions and disease associations of the identified “inhibition-related 

“gene set (Figure 5.1E).

Figure 5.1 Schematic of the pipeline for the investigation of neural and transcriptional commonality. 
(A) Activation likelihood estimation (ALE) meta-analyses of functional MRI studies. MRI coordinates of 
reported brain activations from relevant studies were used to generate the activation map for each task 
of interest. (B) Meta-analytic connectivity modeling of seed regions resulting from the ALE analyses was 
conducted to search co-activated regions over all studies in BrainMap. Coactivation maps were estimated 
via ALE. (C) To generate behavioral profiles of co-activation maps, we used Neurosynth to acquire a list of 
meta-maps, including the behavioral terms from low-level to high-level cognitive processes (total Number of 
terms=23). Next, each co-activation map was compared to all meta-maps (e.g., inhibition, decision making, 
and social cognition) to compute the similarity index for each meta-map. (D) The activation patterns were 
associated with gene expression maps from the Allen Human Brain Atlas (AHBA). Each gene expression 
map was vectorized based on the expression measures within the three-dimension maps. The ALE values at 
the corresponding brain regions on the activation map were extracted and vectorized. To identify the genes 
whose spatial patterns are similar to a specific activation map, the similarity between all vector pairs were 
quantified. “Inhibitory-related” genes were defined by identifying genes of which the expression patterns are 
correlated with the activation maps of four paradigms (ER, Emotion Regulation; TNT, Think/No-Think; SS, 
Stop-signal; GN, Go/No-go). (E) “Inhibition-related” genes were associated with biological functions (GO 
terms) and disease terms for the interpretation using Gene Ontology Enrichment Analysis (GOEA).

Materials and Methods

Literature searches, selection, and coordinates extraction

In total, we performed literature searches for four task paradigms (think/no-think, emotion 

regulation, stop-signal, and go/no-go) and one network (“default mode network”). To avoid 

biases, we used the following inclusion criteria during the search.
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(1) We only included data from studies on healthy adults with no prior report of neurological, 

medical, or psychiatric disorders in the current meta-analysis, while results of patients or specific 

sub-group effects (e.g., gender differences) were not included. Articles including patients were 

only selected if they reported results for a control group separately, and only the control group 

was included here.

(2) Only neuroimaging studies, which used whole-brain fMRI and reported coordinates for brain 

activation or deactivation in standard anatomical reference space (Talairach/Tournoux; Montreal 

Neurological Institute (MNI)) were considered. Coordinates originally published in Talairach 

space were converted to MNI space using the algorithm implemented in GingerALE 3.0.2 (http://

www.brainmap.org/ale/)

(3) Only studies reporting results of General Linear Model (GLM) contrasts were included, 

while studies focusing on functional connectivity, structural, resting-state, or brain-behavior 

correlations were excluded.

(4) Only studies reporting whole-brain analyses were included, while studies based on partial 

coverage or employing only region-of-interest analyses were excluded.

Detailed search and extraction procedures were as following for each paradigm: 

Think/No-Think studies

A step-wise procedure was used to search articles, published before February 2020, using 

functional MRI to investigate brain activity during Think/No-Think paradigm. First, we used 

standard search in PubMed and ISI Web of Science to perform the search. More specifically, we 

used the combination of following keywords during the search: “memory regulation”, “memory 

control”, “memory suppression regulation”, “memory inhibition”, “think/no-think”, “fMRI”, 

“neuroimaging”, “functional magnetic resonance imaging”, or “functional MRI”. At the same time, 

we carefully exclude studies using the “directed forgetting” paradigm, which targets the memory 

control during the encoding.  Next, two lab members compared the search results with a recent 

review article (Michael C. Anderson & Hanslmayr, 2014) to find additional relevant studies. The 

same two lab members independently extracted the coordinates and other essential information 

(e.g., sample size, type of stimulus) extraction based on the identified think/no-think literature 

and then cross-validated the coordinates. In summary, this search and inclusion/ exclusion 

criteria led to 15 think/no-think studies (491 subjects and 256 foci). 

Emotional Regulation Studies

We used the databases of previously published meta-analyses on emotion regulation (Kohn 
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et al., 2014; Morawetz et al., 2017). We used the keywords: “emotion regulation”, “affective 

regulation”, “implicit emotion regulation”, “explicit emotion regulation”, “interpersonal emotion 

regulation”, “extrinsic emotion regulation, “intrinsic emotion regulation”, “reappraisal”, 

“suppression”, “distraction”, “detachment”, “labelling”, “affective labelling”, “reinterpretation”, 

“rumination”, “fMRI”, “neuroimaging”, “functional magnetic resonance imaging”, or “functional 

MRI”. In the case that a study did not report the contrast of interest for this meta-analysis, the 

corresponding authors were contacted and asked to provide more information on their data. 

The term “experiment” refers to any single contrast analysis, while the term “study” refers to a 

scientific publication, usually reporting several contrasts, i.e. experiments. This search and the 

employed inclusion/exclusion criteria led to a total inclusion of 107 studies from peer-reviewed 

journals by July 31st, 2017 (385 experiments, 3204 participants).

Each experiment was manually coded by the authors of the previous meta-analysis (C.M. and 

N.K) with terms that described the experimental design with respect to contrast, stimulus type 

utilized, emotion regulation strategy, goal of the strategy, valence of the stimuli, tactics of the 

strategy and the task nature. To achieve a more appropriate comparison between think/no-think 

and emotion regulation, we restricted inclusion to ER studies that used the “suppression” or 

“distraction” strategy. This led to a similar amount of studies compared to memory control and 

most crucially suppression or distraction of emotions is conceptually also closer to the process 

of suppressing memories. These criteria led to the inclusion of 15 emotion regulation studies 

(387 subjects and 165 foci).

Go/No-go and Stop-signal studies

A similar procedure was used to search published whole-brain functional MRI studies using 

the “Go/Nogo” and “Stop-signal” paradigm. To confirm the completeness of our search, we 

compared our results with used studies in a recent meta-analysis of motor inhibitory and memory 

control (Guo et al., 2018). Again, two lab members (W.L and N.P) performed the coordinates and 

study information extraction for the Go/No-go and Stop-signal studies.

Default Mode Network (DMN) (task-negative network) identification

We also performed a coordinated-based meta-analysis to identify the DMN. Instead of manually 

searching related studies and extracting coordinates, we used the BrainMap database (Fox 

& Lancaster, 2002; Angela R Laird et al., 2005) to find peak coordinates of task-independent 

deactivation reported in neuroimaging literature. This method was used before by Laird and 

colleagues (A. R. Laird et al., 2009) to identify the core regions in DMN. More specifically, we 

searched the BrainMap for all contrasts that were labeled as “deactivation” and “low-level 

control” during submission.  “Deactivation” refers to contrasts in which stronger signal was 

observed during a baseline condition than during task condition (e.g., Control-Task); “low-level 
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control” are conditions in which either fixation or resting was defined as the baseline. Our search 

was further limited to “normal mapping”, which means that participants who were diagnosed 

with disease or disorders were excluded. In total, 105 studies (1588 foci) matched our search 

criteria and were used in the following analyses.

Activation Likelihood Estimation (ALE) analyses

The ALE analyses were based on the revised ALE algorithm (Eickhoff et al., 2009) in GingerALE 

2.3. Firstly, two separate meta-analyses were conducted for the Think/No-Think (contrast: 

No-Think vs. Think) and emotion regulation (contrast: Regulation vs. View) tasks using 

cluster-level inference (FWE cluster-level correction p<0.05, uncorrected cluster-forming 

threshold p<0.001, threshold permutations=1000). Secondly, contrast analyses (Eickhoff et 

al., 2011) were conducted between the Think/No-Think and emotion regulation tasks. In these 

contrast analyses, the thresholded activation maps from the two separate analyses, as well 

as the pooled results from both tasks, were used as inputs. Conjunction and contrast maps 

between the conditions were given as output. For the output images, the same cluster-level 

threshold correction was used (FWE cluster-level correction p<0.05, uncorrected cluster-forming 

threshold p<0.001, threshold permutations=1000).

Additionally, meta-analyses of published fMRI studies using the Stop-signal and Go/No-go 

paradigms were also performed. The same software (GingerALE 2.3) and threshold (cluster-level 

p<0.05) was used to perform the analysis. Due to the unbalanced number of studies and 

subjects included, no conjunction or contrast analyses were performed for four tasks to identify 

the overlap. 

Co-activation analyses using BrainMap

We conducted the Meta-Analytic Connectivity Modeling (MACM) analyses on the regions from 

the ALE meta-analysis. More specifically, for each ROI, we used the BrainMap database (A 

R Laird et al., 2009; Angela R Laird et al., 2011) to search for experiments that also activated 

the particular ROI. Next, we retrieved all foci reported in the identified experiments. Finally, 

ALE analyses were performed over these foci to identify regions of significant convergence. 

Sequentially, raw co-activation maps were corrected for multiple comparisons (Voxel-wise False 

Discovery Rate(FDR)<0.05. All clusters sizes> 200mm3)

Functional profiles of the co-activation maps

To assess associated functional terms of the co-activation maps generated by MACM, we 

used the NeuroSynth meta-analytic database (www.neurosynth.org) (Yarkoni et al., 2011). We 

followed the methodology (See Meta-analytic Functional Gradients section) used in a previous 

study to assess topic terms associated with the principal connectivity gradient in the human 
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brain (Margulies et al., 2016). More specifically, we conducted a term-based meta-analysis for 

the same list of NeuroSynth topic terms as Margulies and colleagues did. This list covered 

well-studied functional terms from low-level cognition (e.g., visual perception, and auditory) to 

high-level cognition (e.g., language, and rewarding).  Sequentially, we examined the association 

between these term-based activation maps with our four sets of co-activation maps (emotion 

regulation, think/no-think, stop-signal, go/no-go). For each co-activation map, a spatial similarity 

index (r statistic) between each co-activation map and each meta map of the functional term 

was provided. The terms were then ordered based on the average correlation for interpretation 

and visualization. 

Activation-gene expression association analysis

We used a recently developed activation-gene expression association analysis to link the 

task-related brain activity to gene expression in postmortem human brains. This analysis can 

identify a list of associated genes based on the MRI-space statistical map(s). This analysis 

presupposes that if certain gene(s) are associated with the cognitive task of interest, then 

spatial distributions of their expression values and task-related activation pattern measured by 

functional MRI should be similar.

The Allen Human Brain Atlas (http://www.brainmap.org) was used in the gene expression 

decoding analysis. The atlas provided genome-wide microarray-based gene expression data 

based on six postmortem human brains (Gene expression level of over 62000 gene probes 

for around 1000 sampling sites across the whole brain were recorded) (Hawrylycz, Lein, 

Guillozet-Bongaarts, Shen, Jones, et al., 2012). Additionally, structural brain imaging data of 

each donor was collected and provided, which enable users to visualize gene expression in its 

naive space and perform the registration to the standard MRI MNI space.

Previous studies used slightly different statistical methods to associate task-independent 

MRI-based brain measures (e.g., cortical thickness, functional or structural networks) with 

the gene expression data (Richiardi et al., 2015; Seidlitz et al., 2018; Wang et al., 2015). We 

used the method developed by Gorgolewski and colleagues implemented in the alleninfo tool 

(K. Gorgolewski et al., 2014) (https://github.com/chrisfilo/alleninf). This method was originally 

designed for the association analysis between voxel-vise statistical maps and gene expression 

maps. This method was also by default implemented in Neurovault (K. J. Gorgolewski et al., 2015) 

(https://neurovault.org/). The method has two important features: (1) nonlinear coregistration 

of the donor’s brain with MNI space was allowed and (2) the ability to use a random-effects 

model makes it possible to generalize the results to the whole population. The activation-gene 

expression association analysis works as following: (1) data from gene probes were aggregated 

for each gene, resulting in 20787 gene expression maps. (2) For each gene expression map, MNI 
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coordinates of each sampling location (the locations in which brain tissues were analyzed for the 

gene expression data) were extracted to draw a spherical ROI (r=4mm). We used these ROIs to 

extract the average values of the ALE statistical map within each ROI. Next, the gene expression 

and meta-analysis vectors were correlated. (3) This extraction and correlation procedure was 

repeated for each gene expression map to quantify the spatial pattern similarity between the 

statistical maps and gene expression map. (4) Different threshold (i.e., 500, 1000, 1500, 2000) 

was implemented to generate the significantly associated gene list(s) among the 20787 genes. 

We mainly presented results under the threshold of 2000 most significant genes, but results 

under other thresholds can be found in the Supplemental Material. Since the negative correlation 

between brain measures and gene expression is difficult to explain, we only considered the 

positively correlated genes. Additionally, because of fundamental differences in gene expression 

between cortical and subcortical regions, we only performed our analyses within the cortical 

regions.

The described association analysis takes MRI statistical map(s) as input(s) and will output a list of 

significantly associated genes. To investigate the common transcriptional signatures (associated 

genes) of emotion regulation and memory control, we used the unthresholded statistical maps 

from the ALE analyses to identify the task-associated gene list via the association algorithm. 

Next, the common gene list was generated by overlapping the emotion regulation-associated 

gene list and memory control-associated gene list. To further investigate whether the two gene 

lists significantly overlapped with each other, we generated the null distribution of the number 

of overlapping genes by creating two gene lists (with the same size as the real gene lists) from 

the 20787 genes. To control for autocorrelation, we generated 5000 lists in this way and for 

each doner, we estimated the overall spatial similarity between identified genes (i.e., emotion 

regulation-related and memory control-related genes) for each donor (Table S5.3).  Identified 

genes demonstrated modest spatial correlations (mean=0.063, standard deviation=0.27) 

across different thresholds and donors. Based on these correlation values, 1718 out of 5000 pairs 

of randomly generated gene lists with a similarity ranging from 0.05 to 0.07, and the standard 

deviation ranging from 0.25 to 0.29 were further selected. The significance of overlapping 

genes was estimated by comparing the real number of overlapping genes with the number of 

overlapping genes within these 1718 pairs. 

An alternative method (i.e., “permutated” statistical maps) was also used to evaluate the 

significance of the overlap further. We permutated the spatial distribution of the fMRI statistical 

maps used in the activation-gene expression association analysis for 100 times. Voxel-wise 

statistical values that were stored at the real maps (i.e., emotion regulation or memory control 

map) were relocated to other locations, testing for spatial specificity of the original task-related 

spatial patterns, but containing all voxel-wise values. It is notable that this relocation procedure 
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was restricted by the functional-defined brain parcellation (Schaefer et al., 2018). In this way, 

intrinsic connectivity associations that might underlie functional networks and brain parcels are 

retained. These “permutated” statistical maps were used for the activation-gene expression 

association analysis to generate 100 pairs of gene lists. Before the overlapping calculation, we 

also calculated overall spatial similarity with each pair. Seventy-two out of 100 pairs of these gene 

lists had a similarity ranging from 0.05 to 0.07 (mean=0.06) with a standard deviation ranging 

from 0.25 to 0.29 (standard deviation=0.27). These results were used as the null distribution 

to estimate the p-value of the overlap. To identify the “inhibition-related” genes, we first used 

the same activation-gene expression association analysis to identify the stop-signal and go/

no-go-associated gene list and then defined the overlap between four gene lists (emotion 

regulation, think/no-think, stop-signal, and go/no-go) as “inhibitory-related” genes. 

We aim to improve the specificity of our activation-gene expression association analysis and 

safeguard the possibility that these identified genes may only support the general functional 

brain network architecture instead of particular cognitive functions. To rule out this possibility, 

we performed a dedicated control analysis: (1) An unthreholded DMN ALE map was used as 

a comparison with four inhibitory control tasks because control processes hardly take place 

in the DMN and the DMN has been associated with homeostasis and undirected thought or 

mind-wandering. (2) A pair of “permutated” statistical maps with comparable spatial similarity 

level (mean ranging from 0.05 to 0.07, standard deviation ranging from 0.25 to 0.29) was also 

used to calculate the transcriptional overlap with four inhibitory control tasks.

We used a range of different numbers of genes (x from 1 to 2000, with step size 10) as thresholds 

to identify the top x most similar genes. We calculated three kinds of overlap under different 

thresholds: the first one is “within control” overlap, which is the overlap in gene expression 

association between two inhibitory tasks (e.g., think/no-think and emotion regulation, or 

stop-signal and go/no-go); the second one is “inhibitory & DMN” overlap, which is the 

transcriptional overlap between one of the control-related tasks and DMN (e.g., think/no-think 

and DMN, or emotion regulation and DMN). The third one is the “inhibition & permutation” 

overlap, which is the overlap of associated gene lists between one of the actual statistical maps 

(i.e., emotion regulation or memory control) and one of the permutated statistical maps. Finally, 

we averaged the percentage of each kind of overlap for a certain threshold x and compared the 

average percentages across all thresholds.

Gene Ontology Enrichment Analysis 

The Gene Ontology(GO) is a widely used bioinformatics tool to interpret the complex gene list 

based on the knowledge regarding functions of genes and gene products (Ashburner et al., 

2000; D. W. Huang et al., 2009). To systematically investigate the biological meaning of the 
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“inhibitory- related” genes, we use GO to perform a binary version of the overrepresentation 

test for Biological Processes (BP), Molecular Function (MF), and Cellular Component (CC). 

We did not use additional parameters to restrict the selection of Go categories. Currently, 

experimental findings from over 140 000 published papers are represented as over 600 000 

experimentally-supported GO annotations in the GO knowledgebase. For the input gene list, 

“Gene Ontology enrichment analysis” can identify relevant groups of genes that function 

together, and associate and statistically test the relationship between these groups and Go 

annotations. In this way, it can reduce a big list of genes to a much smaller number of biological 

functions (BP, MF, or CC), and make the input list more easily comprehendible. This method has 

been applied successfully to understand the output of many gene expression studies, including 

the study that also used the Allen Human Brain Atlas (Richiardi et al., 2015). More specifically, 

we used GOATOOLS (Ashburner et al., 2000) to perform the GO analyses based on Ontologies 

and Associations downloaded on 15th November 2018. All of the significant GO items were 

corrected by FDR correction (p<0.05). We further identified the frequently seen words within all 

the significant GO items by counting the frequency of the words after removal of not meaningful 

words (e.g. “of” and “the”).

Disease-related gene set enrichment

Although GO analysis can provide insights into the biological functions (BP, MF, or CC) of the 

overlapped gene list, the approach does not provide sufficient information to identify disease 

associations of the gene list. We leveraged ToppGene (Jing Chen et al., 2009) to explore the 

gene-diseases associations. The ToppGene platform can cluster groups of genes together 

according to their disease associations, and perform a statistical test as well as the multiple 

testing error corrections. The latest version of DisGeNET included associations between 

17,549 genes and 24,166 diseases, disorders, or abnormal human phenotypes. In this study, 

our analysis was based on one of the sub-database of DisGeNET, the DisGeNET Curated 

(expert-curated associations obtained from UniProt and CTD human datasets). We did not use 

additional parameters to restrict the selection of disease items and performed a binary version 

of the over-representation analysis. All of the significant diseases items were FDR-corrected 

(p<0.05).

Data and code availability.

All the data (excluding neuroimaging data) is stored in the Open Science Framework (OSF). Open 

access data includes study summary, extracted coordinates for ALE, significantly associated 

genes for each task paradigm, and overlapped gene list(s)(OSF link: https://doi.org/10.17605/

OSF.IO/6WZ2J). Neurovault was used to store all the neuroimaging data (e.g., results of ALE from 

Figure2, MACM from Figure3, and “Top Genes” expression maps from Figure 4) and provide 3D 

visualization of all the statistical maps (Neurovault link: https://neurovault.org/collections/4845/). 
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Functional-defined brain parcellation can be found in (https://github.com/ThomasYeoLab/CBIG/

tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal) Other research data 

supporting reported findings are available from the authors upon request. 

For the neuroimaging meta-analysis, two software (GingerALE and Sleuth) (http://www.

brainmap.org/software.html) were used. The Neurosynth Tool (https://github.com/neurosynth/

neurosynth), a Python package that covered most of the functions on the Neurosynth (http://

www.neurosynth.org/) website, was used in functional profile analyses and co-activation 

analyses. Activation-gene expression association analyses were based on alleninfo tool (https://

github.com/chrisfilo/alleninf) and web application of gene decoder within the Neurovault (https://

neurovault.org/). Nilearn (https://nilearn.github.io/) was used to load, manipulate, and visualize 

MRI statistical maps. 

GOATOOLS (https://github.com/tanghaibao/goatools), a Python library, was used for Gene 

Ontology analyses and related visualization. The Ontology data was downloaded from the 

Gene Ontology website (http://geneontology.org/ontology/), and the Association data was 

downloaded from the National Center for Biotechnology Information (ftp://ftp.ncbi.nlm.nih.gov/

gene/DATA/). ToppGene Suite (https://toppgene.cchmc.org/) was used for disease-related gene 

set enrichment. The gene-disease association database can be downloaded from http://www.

disgenet.org/.

Anaconda (https://www.anaconda.com/) Python 3.6 version for Win10 was used as the platform 

for all the programming and statistical analyses. Custom python scripts were written to perform 

all analyses described based on the mentioned Python packages and are released via the OSF.

Results

Regional brain activity associated with emotion regulation and memory control

Taking data from 95 published studies including in total 1995 subjects, we used 15 Emotion 

Regulation studies to represent emotion regulation, and 15 Think/No-think studies to represent 

memory control. It is noteworthy that we explicitly only focus on emotion regulation studies using 

the “suppression” or “distraction” as the regulation techniques rather than the more common 

“cognitive reappraisal” because of the conceptual relation with memory control, and equal 

statistical power between contrasted conditions. Furthermore, 27 Go/No-go studies and 38 

Stop-Signal studies were used to represent response inhibition. (A list of studies and coordinates 

are available via the Open Science Framework; Search and inclusion criteria in Materials and 

Methods).
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Regional brain activity of emotion regulation

The meta-analysis of the emotion regulation studies revealed six brain regions that are active 

during “regulation” compared to a “passive viewing” condition (FWE-cluster level corrected 

p<.05, uncorrected p<.001, threshold permutations=1000). Emotion regulation task consistently 

led to activation in right insula/inferior frontal gyrus (IFG), left IFG, left insula, middle cingulate 

gyrus, right inferior parietal lobule (IPL) and left supplementary motor area (SMA) (Table 5.1, 

Figure 5.2A). 

Regional brain activity of memory control

Memory control studies revealed five brain regions during the “No-Think” condition compared 

to the “Think” condition (FWE-cluster level corrected p<.05, uncorrected p<.001, threshold 

permutations=1000): left insula/IFG, right dorsolateral prefrontal cortex (DLPFC), right middle 

frontal gyrus, bilateral IPL/supramarginal gyrus, bilateral precuneus, and SMA (Table 5.1, Figure 

5.2B).

Regional brain activity of response inhibition

We used the same meta-analytical approach for all Go/No-go and Stop-signal studies and 

found similar significant clusters during the “control” condition compared to “baseline” condition 

(No-go vs go; Stop vs Go) in the insula, IFG, middle cingulate gyrus, SMA, IPL, and DLPFC 

(Figure 5.2C and Figure 5.2D, Table S5.1 and Table S5.2). 

Analyses of convergence and divergence

To examine the spatial convergence and divergence between emotion regulation and memory 

control activations, we performed formal conjunction and contrast analysis (FWE-cluster level 

corrected p<.05, threshold permutations=1000). The conjunction and contrast analysis did not 

find any reliable clusters after correction. Informal overlap analysis of two thresholded maps (i.e., 

emotion regulation and memory control) revealed a shared cluster of right IPL (MNI:60/-42/42; 

BA40). 
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Figure 5.2 Brain activity underlying four inhibitory control tasks revealed by Activation likelihood 
estimation (ALE) meta-analyses. (A) Brain regions significantly more activated in the “Regulation” 
compared to the “Baseline” condition during the Emotion Regulation task. (B) Brain regions significantly 
more activated in the “Control” compared to the “non-control” condition during the memory control task. 
(C) Brain regions significantly more activated in the “No-Go” compared to the “Go” condition during the 
Go/No-go task. (D) Brain regions significantly more activated in the “Stop” compared to the “Go” condition 
during the Stop-signal task.

Table 5.1 Significant activated clusters during emotion regulation and think/no-think task

Task Brain region Hemisphere MNI coordinates
Cluster 
size

Peak 
voxel 
Value

Emotion 
Regulation

Insula/IFG R 36  16   6 209 0.02056

IFG L -46  44  -4 138 0.02051

Insula L -34  16  12 156 0.02089

Middle Cingulate Gyrus L/R 10  22  44 215 0.0189

Inferior parietal lobule R 60 -42  46 90 0.01688

SMA L -4  6  62 110 0.0217



174 | 

CHAPTER 5

Memory 
Control

IFG/Insula L -36  20  -4 115 0.017

DLPFC R 36 48  24 221 0.018

Supramarginal Gyrus/IPL R 56 -44 32 167 0.02

Supramarginal Gyrus/IPL L -58 -52 38 125 0.025

Middle Frontal Gyrus R 42 20 42 126 0.022

Precuneus R 8 -56 54 140 0.021

Precuneus/SPL L -16 -64 56 114 0.017

SMA R 12 12 60 190 0.023

IFG: inferior frontal gyrus; SMA: supplementary motor area; DLPFC: dorsolateral prefrontal cortex; IPL: 
Inferior parietal lobule; SPL: Superior parietal lobule

Co-activation maps of regions associated with emotion regulation and memory control

To gain deeper insight into the co-activation profiles of brain regions associated with emotion 

regulation and memory control, we used a large database of fMRI studies (BrainMap: http://www.

brainmap.org/) and applied meta-analytic connectivity modeling (MACM). This approach reveals 

brain regions that are consistently activated together with the seed regions resulting from the 

ALE meta-analyses. To control for specific modeling methods and sizes of seed regions, we also 

performed similar co-activation analyses using Neurosynth (http://neurosynth.org/) based on 

peak voxel coordinates of each seed region instead of the entire clusters. The two approaches 

yielded similar co-activation maps for each ROI. In the main test, we only report results from the 

BrainMap analysis (Results from the Neurosynth can be found in Figure S5.1 and S5.2)

In total, we analyzed six ROIs from the meta-analysis of emotion regulation studies. MACM 

analyses for the left IFG and right IPL revealed co-activation patterns in the direct vicinity of the 

seed regions. Co-activation analyses of other seed regions, including the bilateral insula, SMA, 

MACC revealed co-activation between these ROIs and with the cerebellum, IFG, IPL, thalamus, 

and DLPFC (Figure 5.3A). Similarly, we analyzed eight seed regions from the meta-analysis 

of memory control studies. ROIs tended to be co-activated with each other. Only the MACM 

analysis for the left IPL ROI identified modest co-activation patterns (Figure 5.3B). In addition, 

we investigated the co-activation profiles of response inhibition tasks. The co-activation patterns 

of 11 ROIs from Go/No-go meta-analysis and ten ROIs from Stop-signal meta-analysis were 

estimated using the same method. We found a brain network including bilateral DLPFC, insular, 

IPL, thalamus, SMA, and MACC across the co-activation patterns of ROIs from response 

inhibition.
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Figure 5.3 Co-activation maps of Emotion Regulation and Memory Control revealed by Meta-analytic 
connectivity modeling (MACM). (A) Co-activation maps for regions of interest (ROIs) resulting from ALE 
analysis of the emotion regulation. (B) Co-activation maps for ROIs resulting from ALE analysis of the 
memory control. ALE-based ROIs are projected onto glass brains (left column), and co-activation patterns 
are rendered on an MNI template second to ninth column (right columns).
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Behavioral profiles of the co-activation maps

To identify the cognition domains most strongly associated with these co-activation maps, we 

created the behavioral profiles of each co-activation maps using the Neurosynth database.

First, we quantified the behavioral profiles of co-activation maps of emotion regulation and memory 

control. As expected, these two sets of co-activation maps were both strongly characterized 

by terms such as “inhibition”, “cognitive control”, and “working memory”. Then, the behavioral 

profiles of Stop-signal and Go/Nogo co-activation maps were estimated in the same way. Finally, 

we investigated the commonalities of behavioral characteristics of all co-activation maps across 

four paradigms and revealed that these co-activation maps have the highest correlations to 

terms including “inhibition”, “cognitive control”, and “working memory”, compared to other items 

(Figure 5.4).

Figure 5.4 Behavioral profiles of co-activation maps across four inhibitory control tasks. Spatial 
similarity between Neurosynth meta-maps and co-activation maps across 23 topic terms. Terms are ordered 
by the mean r-values across the row(s) (all co-activation maps). “Working memory”, “cognitive control”, 
and “inhibition” are located at the top, suggesting the common stronger association. Domain-specific 
cognitive functions (e.g. autobiographical memory, emotion) are located at the bottom, suggesting a limited 
association.

Transcriptional signatures underlying the Emotion Regulation and Memory control

Next, to understand the transcriptional correlates that may be associated with brain activity 

elicited by each task, we combined the Allen Human Brain Atlas (AHBA), a brain-wide atlas 

of gene expression of postmortem brains and spatial pattern correlation. More specifically, we 

aimed to identify the genes for which the spatial transcriptional patterns are similar to the spatial 

pattern of brain activity during a given task. 
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Common transcriptional correlates of brain activity 

We used the activation-gene expression association analysis to identify two lists of genes whose 

spatial patterns correlate with emotion regulation-related brain activity patterns or memory 

control-related brain activity patterns separately. The top ten genes with the highest spatial 

similarities are represented in Figure 5A, and their expression patterns in the brain are depicted 

in Figure 5.5B (Complete gene lists in the OSF repository). We found a substantial overlap 

(Figure 5.5A) between the two identified gene lists for the emotion regulation and memory control 

activation networks: there are in total 1212 genes (60.6% of all correlated genes) whose expression 

pattern correlated with the brain activity pattern of both tasks. We evaluated the significance of 

the overlap by generating a set of null distributions of the overlapping genes under the restriction 

of spatial similarity. Specifically, two gene lists with identical sizes (list1=2531; list2=1529) were 

randomly selected from all the genes (N=20787), and then overlapping genes between the two 

random lists were identified. This procedure was repeated 5000 times. 1718 out of 5000 pairs 

of randomly sampled genes demonstrated a similar level of spatial similarity as our gene lists of 

interests. We found that the amount of overlapping genes between the memory control and the 

emotion regulation was significantly larger than the number of overlapping genes within these 

1718 randomly sampled overlapping genes lists across different thresholds (threshold=2000, 

real overlapping=1212, random overlapping=193.28 ± 12.3, p<0.001) (Results at different 

thresholds presented in Table S5.4). Furthermore, the significance of the overlap was estimated 

by generating 100 pairs of “permutated” statistical maps. 72 out of 100 pairs of genes that were 

associated with these “permutated” maps were used for the estimation because they showed a 

comparable level of spatial similarity across genes. The amount of real overlapping genes was 

significantly higher than the number of overlapping genes within these 72 pairs of genes across 

different thresholds (threshold=2000, real overlapping=1212, permutated overlapping=667.3 

± 147.39, p<0.01). (Full results in Table S5.5).  

Specificity of “inhibition-related” genes

To test the specificity of the “inhibition-related” genes versus genes related to neuronal activity 

and brain function in general, we first generated, also using an ALE meta-analysis, the activation 

map of “Default Mode Network” (DMN), or “Task-Negative Network” (See Materials and 

Method; Figure S5.3). Next, we identified a list of genes associated with the DMN network 

and “permutated” maps emotion regulation and memory control via the AHBA and the same 

activation-gene expression association analysis. Given the fact that the DMN has been associated 

with homeostasis and undirected thought or mind-wandering, we expected that DMN-associated 

genes are different from inhibition-association genes. To test this, we calculated the number of 

overlapping genes between all possible combinations of two out of the seven reported gene lists 

(memory control, emotion regulation, stop-signal, and go/no-go, DMN, “permutated” memory 

control, “permutated” emotion regulation) across different thresholds. As depicted in Figure 
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5.5C, genes associated with inhibitory-control tasks demonstrate more overlap between each 

other than the associated genes between the inhibitory-control tasks and the DMN (mean Within 

Inhibition =41.24%, mean Inhibition & DMN =35.18%, t=3.44, p=0.0006). They also showed 

more overlap compared to associated genes between inhibitory-control tasks and “permutated” 

inhibitory control maps (mean Within Inhibition =41.24%, mean Inhibition & Permutation 

=29.53%, t=6.97, p=1.26 ×10-11). 

Biological functions and disease associations of the “inhibition-related” genes 

Using gene ontology (GO) (Ashburner et al., 2000), a widely-used literature-based 

gene-to-function annotation analysis, we generated a list of biological functions related to the 

“inhibition-related” genes. Furthermore, due to the common finding of impairment in inhibitory 

control in neurological and psychiatric disorders, we explored the human disease association of 

the identified gene list.

Enrichment for biological functions

Gene Ontology Enrichment Analysis (GOEA) of 779 “inhibition-related” genes identified 5 

related Biological Processes (BP), which are associated with information communications 

between neurons (Table S5.6). More specifically, 19 genes within the list are associated with 

the neuropeptide signaling pathway, 30 genes with the chemical synaptic transmission, and 17 

genes with the potassium ion transmembrane transport, 38 with the cell adhesion, and 60 with 

signal transduction.

Enrichment for human diseases 

Additionally, we used ToppGene (https://toppgene.cchmc.org/) to perform the gene list 

enrichment analysis of 708 “inhibition-related” genes for human diseases. Using DisGeNET 

(www.disgenet.org), a comprehensive database on the relationship between human diseases 

and genes, we found significant associations between our gene list and 36 disease terms (Table 

S5.7). Among these diseases, seizures/epilepsy, chronic alcoholic intoxication, depression, 

bipolar disorder, autism spectrum disorders, and schizophrenia were ranked top 10 of the list 

(i.e., most significant associations) (Figure 5.5D).

We performed a preliminary investigation of the unique diseases associations for inhibition, 

but not DMN. First, we calculated the differences between “inhibition-related” genes and 

DMN-related genes under four different thresholds and included the results into the ToppGene. 

Only under the threshold of 1500 genes, the algorithm identified a significant association 

between 103 “inhibition-unique” genes and the risk for Schizophrenia. In other words, 

variance in these genes, which are associated with inhibition, but not DMN, are reported to be 

associated with an increased risk for Schizophrenia. We also performed the disease association 

analysis for “inhibition-related” and DMN-related genes separately. These two sets of genes 
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were associated with similar brain disorders (e.g., Schizophrenia, Autistic Disorder, Unipolar 

Depression, Alcoholic Intoxication) (See OSF folder). One important difference between the two 

sets of genes is that “DMN-related” genes are uniquely associated with Alzheimer’s Disease and 

Age-Related Memory Disorders (Figure S5.4), which is consistent with our knowledge regarding 

the relationship between DMN, aging, and memory.     

   

Figure 5.5 Common transcriptional profiles revealed by activation-gene expression association 
analysis. (A) Transcriptional patterns of 1212 genes correlated with both the emotion regulation and memory 
control-related brain activity patterns. (B) Visualization and comparison of brain activation patterns and 
expression patterns of “Top Genes”. “Top Genes” are 10 genes with the most similar expression patterns 
as the brain activation. (C) The gene lists of two inhibitory control tasks were more overlap with each other 
(Within Inhibitory) compared to one of the inhibitory control and DMN (Inhibitory & DMN) or one of the real 
inhibitory control and one of permutated inhibition inhibitory control (Inhibition & Permutation). (D) Disease 
associations of “inhibitory-related” genes. “Inhibition-related” genes are associated with genetic risks for 
depression, bipolar disorder, autism spectrum disorders, schizophrenia, seizures/epilepsy, and chronic 
alcoholic intoxication. Terms are ordered by the percentage (Left Green) of hit counts in the query list to hit 
count in the genome. The hit count in the query list is the number of genes belongings to “inhibitory-related” 
genes (Right Dark Blue). The hit count in the genome is the total number of genes associated with the risk 
for certain disease terms based on the DisGeNET (Right Light Blue).
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Discussion

Inhibitory control is a fundamental cognitive function supporting other processes like emotion 

regulation and response inhibition. Here, we provided neurobiological evidence from human 

neuroimaging and transcriptional mapping to support the concept that there is one generic 

neural network of inhibitory control with a set of “inhibition-related” genes modulating not only 

response inhibition but also emotion regulation and memory control. Our meta-analysis of 95 

neuroimaging studies revealed a common role of the right inferior parietal lobule and related 

regions in a frontal-parietal-insular network during emotion regulation and memory control. 

These co-activation patterns were also similar to the meta-analysis results of response inhibition 

tasks, and “inhibition-related” network reported in the literature. Additionally, we used the Allen 

Human Brain Atlas as an avenue to link this neural network to common transcriptional profiles 

and identified “inhibition-related” genes, which are associated with the neuronal transmission, 

and risk for major psychiatric disorders as well as seizures and alcoholic dependency. 

The idea that inhibitory control is the underlying core cognitive function in emotion regulation 

was already suggested before (McRae et al., 2012; Ochsner et al., 2002; Ochsner & Gross, 

2005; Schmeichel et al., 2008; Wager et al., 2008). Similarly, it was also suggested that inhibitory 

control plays a fundamental role in memory control (Benjamin J Levy & Anderson, 2002). A 

unified theory proposed a central role of inhibitory control in various psychological domains 

(e.g., motor inhibition, emotional response, and memory retrieval) depending on external task 

requirements (Aron et al., 2004, 2014; B. E. Depue et al., 2016). Engen and Anderson recently 

reviewed behavioral and neuroimaging studies in this field and proposed the conceptual link 

between emotion regulation and memory control (Engen & Anderson, 2018). However, there has 

been little empirical support for this link. Our multimodal analysis provides rich evidence beyond 

neuroimaging supporting a conceptual link and suggests that inhibitory control, as well as its 

underlying neural and transcriptional correlates, modulate both emotion regulation and memory 

control.

Brain activation patterns of emotion regulation and memory control found here are in accordance 

with previous meta-analyses (emotion regulation: e.g., Buhle et al., 2014; Kohn et al., 2014; 

memory control: e.g., Guo et al., 2018). We found one overlapping region between emotion 

regulation and memory control, the right inferior parietal lobule. Due to the central role of 

inhibitory control in both tasks, only one overlapping brain region seems surprising at first glance. 

However, meta-analytic connectivity modeling revealed that other regions (including IFG, insula, 

preSMA/MACC, IPL) that lacked significantly overlapping activations across emotion regulation 

and memory control, form a tightly integrated network. Our results suggest that although these 

regions do not overlap strictly, they belong to the same functional network. Our behavioral profile 
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analysis corroborated this interpretation: both co-activation maps of emotion regulation and 

memory control, as well as stop-signal and go/no-go paradigms, have comparable behavioral 

profiles and were characterized by terms like “inhibition,” “cognitive control,” and “working 

memory.” 

We have demonstrated the neural commonality of emotion regulation and memory control. 

Next, we proceeded to investigate if transcriptional profiles overlap with activity patterns in a 

similar way. Critically, this study adopted an imaging-genetic approach to investigate the 

common transcriptional signatures across neural networks of emotion regulation and memory 

control. Activation-gene expression association analysis revealed a largely overlapping gene 

list whose expression patterns were similar to the activation patterns. Furthermore, we identified 

a list of “inhibition-related” genes and characterized their biological function and disease 

associations. “Inhibition-related” genes were primarily associated with the neuropeptide 

signaling pathway, chemical synaptic transmission, the potassium ion transmembrane 

transport, and cell adhesion. One common feature of these biological functions is that they 

are critical for information communications between neurons. Together with our neuroimaging 

finding of frontal-parietal-insular network, these genes may act as molecular correlates 

underlying synchronous brain activity during inhibitory control. Inhibition-related” genes were 

also associated with risks for several psychiatric disorders (e.g., depression, bipolar disorder, 

schizophrenia, and autism), seizures, and alcoholic dependence.

Recently, neuroimaging (Goodkind et al., 2015; Sha et al., 2019) and genetic studies (Anttila 

et al., 2018; Cross-Disorder Group of the Psychiatric Genomics Consortium., 2013; Schork et 

al., 2019) collectively demonstrated the potential common biological roots across psychiatric 

disorders. However, common phenotypes across disorders are less well understood. Thus, the 

National Institute of Mental Health’s Research Domain Criteria (NIMH’s RDoC) (https://www.nimh.

nih.gov/research/research-funded-by-nimh/rdoc/index.shtml) summarized several domains of 

phenotypes, where inhibitory control is a central aspect. Here, our results highlighted the critical 

role of inhibitory control and its biological underpinning across psychiatric disorders. Firstly, 

dysfunctional inhibitory control (e.g., impaired response inhibition, lack of emotion regulation, 

and compromised memory control) is evident across different psychiatric disorders (Amstadter, 

2008; Catarino et al., 2015; Ehring & Quack, 2010; Erk et al., 2010; Falconer et al., 2008; 

Joormann & Gotlib, 2010; Lipszyc & Schachar, 2010; Magee & Zinbarg, 2007; Price & Mohlman, 

2007; Sacchet et al., 2017; Tull et al., 2007; Yang et al., 2016). Also, inhibitory control deficits 

can be further linked to some disorder-specific symptoms (e.g., lack of inhibition of negative 

thoughts (or rumination) in depression, lack of fear control in anxiety, and failure to avoid retrieval 

of traumatic memories in PTSD). Secondly, our results suggest an overlap between brain regions 

(frontal-parietal-insular network) involved in inhibitory control and regions whose structural 
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abnormalities were observed consistently in a variety of psychiatric diagnoses (Goodkind et al., 

2015). Thirdly, “inhibition-related” genes, which we identified by spatial transcriptional profiles 

that overlap with activation patterns of inhibitory control tasks, were also associated with the risks 

for a variety of psychiatric disorders. Furthermore, although brain disorders such as epilepsy and 

alcoholic dependence may involve different neurobiological underlies compared to psychiatric 

disorders, impairment of inhibitory control seems to also be a critical behavioral aspect of the 

epilepsy (Elger et al., 2004; Helmstaedter, 2001) and alcoholic dependence (Courtney et al., 

2013; Lawrence et al., 2009; Papachristou et al., 2013).

Our study has two limitations that should be mentioned. First, our neural commonality analyses 

were based on fMRI studies only. However, overlap in fMRI activation or co-activation patterns 

lacks temporal information of the underlying cognitive processes. Electroencephalography (EEG) 

or Magnetoencephalography (MEG) in humans could provide further confirmatory evidence for 

the idea of a common cognitive process. Recently, Castiglione and colleagues reported that 

memory control elicited an electrophysiological signature, increased right frontal beta, which was 

seen in the Stop Signal task (Castiglione et al., 2019). Follow-up electrophysiological studies or 

even a meta-analysis of them might confirm the idea of a common electrophysiological signature. 

Second, the current activation-gene expression association analysis is still preliminary (e.g., 

low sample size and spatial resolution of the post-mortem data), and without the possibility of 

testing the specific relationship between expression maps and cognitive function. For example, 

although our preliminary results demonstrated that “inhibition-specific” genes are associated 

with the risk for Schizophrenia, while DMN-related genes are more closely linked to Alzheimer’s 

Disease, we also identified considerable transcriptional overlaps between “inhibition-related” 

genes and DMN-related genes. The latter may suggest that “inhibition-related” genes, as defined 

in our study may include both “inhibition-specific” genes and other genes supporting general 

brain function. However, it is challenging to separate them using methods currently available. 

Nevertheless, the method already showed great potential when helping to understand basic 

molecular principles of both the structural and functional connectome (See review by Fornito 

et al., 2018) and it identified molecular mechanisms underlying changes in brain structure or 

function associated with brain disorders (e.g., autism spectrum disorder (Romero-Garcia et 

al., 2019), Huntington’s disease (McColgan et al., 2018), schizophrenia (Romme et al., 2017), 

and Alzheimer’s disease (Grothe et al., 2018)). Results from these studies are consistent with 

the genetics of neuropsychiatric disorders using conventional methods like genome-wide 

association studies or animal models. Taken together, although preliminary, neuroimaging-gene 

expression association analysis has demonstrated its potential to bridge brain structure-function 

associations and to reveal its underlying molecular processes. To detect more specific 

associations between spatial transcriptional profiles and neuroimaging data, large sets of 

postmortem gene-expression data with higher spatial resolution need to be collected. Also, 
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more dedicated analytical methods need to be developed and validated (Arnatkevici t  et al., 

2019) with new methods that may better control for the effects of domain-general genes that are 

supporting brain function in general and the bias in gene-set enrichment analyses of brain-wide 

gene expression data, probably induced by the gene-gene co-expression or autocorrelation 

(Fulcher et al., 2020). 

In summary, our multimodal analysis identified a frontal-parietal-insular neural network and 

a set of genes associated with inhibitory control across emotion regulation, memory control, 

and response inhibition. The integrative approach established here bridges between cognitive, 

neural, and molecular correlates of inhibitory control and can be used to study other higher-level 

cognitive processes. Our findings may deepen our understanding of emotion regulation and 

memory control in health and pave the way for better emotion regulation and memory control 

by targeting the core inhibitory-related network or related molecular targets in patients with such 

deficit at issue.
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1. Comparison between BrainMap and Neurosynth-based co-activation analysis

Co-activation analysis can be performed based on large-scale databases of fMRI studies 

such as BrainMap or Neurosynth. During the initial data analysis, we took advantage of the 

relative strengths and weaknesses of the two methods. We augmented the coordinate-based 

meta-analysis on the Neurosynth with meta-analytic connectivity modelling (MACM) based on 

the BrainMap to explore co-activation patterns. The idea behind Neurosynth is similar to MACM 

(which is described in the main text). The Neurosynth algorithm searches for brain regions which 

co-activate with input coordinates within the same functional contrast, and summarize the results 

as a co-activation map. Neurosynth has several advantages over BrainMap: (1) Neurosynth 

is based on automated text mining, therefore includes a higher number of studies and at the 

same time decreases the potential selection bias of the users. (2) ROI-based MACM is largely 

dependent on the size (number of voxels) and the shape of the input ROIs. It could be a potential 

problem because we included far more studies in the ALE analysis of Stop-signal (SS) paradigm 

and Go/No-go (GN) paradigm compared to the emotion regulation and memory control, 

leading to on average larger ROIs for stop signal and go/no-go paradigm. On the contrary, 

Neurosynth-based co-activation analysis does not depend on the ROIs, and it can also base on 

the MRI coordinates, providing a control for the effect of different size of ROIs. The disadvantage 

of Neurosynth compared to BrainMap is that automated text mining does not separate different 

contrasts or experiments within one article. Even though these differences, both methods yielded 

highly similar co-activation patterns for each ROIs (Figure S5.1 and Figure S5.2), suggesting 

that the effect of methodology and database on the neural network analysis in our study is 

negligible. We nevertheless chose to present the results of MACM in the main text.

2. Data sharing of non-imaging data via the Open Science Framework (OSF)

We used the OSF database (https://osf.io/6wz2j/) as a venue to share non-imaging data 

generated within this study. 

2.1 Studies and coordinates used in the meta-analyses

For each task (e.g. ER: emotion regulation; TNT: think/no-think; GN: go/no-go; SS: stop-signal), 

an excel file with all coordinates used in the meta-analyses is uploaded to the folder (ALE_

coordinates_data) within the OSF. 

2.2 Code

Custom python scripts used in this study can be found.

2.3 Details of MACM results 

Within the MACM analyses, we estimated in total co-activation patterns of all ROIs from 4 

different tasks. Because of the limitation of the number of figures presented in the supplemental 
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materials, we cannot provide all the detailed results for these analyses here. Instead, we used 

a python package (atlasreader: https://github.com/miykael/atlasreader) to generate coordinate 

tables and region labels from all co-activation images. All results can be found in an OSF folder 

(folder name: MACM_results_details, filename: MACM_results_altasreader.zip)

2.4 Lists of genes

Complete gene lists, together with the statistical results, is uploaded in one folder (complete_

gene_list) within the OSF database. All files started with “gene_decoding” are the genes whose 

expression patterns correlated with the brain activity pattern elicited by each task of interest. All 

files started with “overlapped_gene_list” are genes whose expression patterns correlated with 

two (ER and TNT) or more (ER, TNT, GN, and SS) task-related activity patterns simultaneously. 

Numbers (e.g. 500, 1000) were thresholds used in the analysis to select the genes with most 

similar spatial patterns. All files started with “difference” are genes whose spatial patterns 

correlated with inhibition tasks, but not DMN.

2.5 Tables generated by gene ontology enrichment analyses

Tables for enrichment analyses of biological functions (GOEA.zip) or diseases items (disease.

zip). Results from different thresholds were presented.

3. Data sharing and 3D visualization of statistical maps via the Neurovault

We uploaded all the statistical maps generated within this study to our Neurovault database 

(https://neurovault.org/collections/4845/) for data sharing purpose and 3D, interactive 

visualization. There are in total of 46 maps within the images collection. 

Images names starting with the task names (e.g. ER) and contrast names (e.g. Regulation  

 vs Baseline) are maps resulting from the ALE meta-analysis. 

Images names ending with threshold methods are corrected ALE images (e.g. ALE C05 1K  

 stands for p<.05, uncorrected p<.001, threshold permutations=1000).

Images names starting with “MACM” are co-activation maps from the MACM analyses. 

No images from the coordinate-based co-activation analysis using Neurosynth were   

 uploaded.
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Table S5.1 Significant activations resulting from the meta-analysis of Go/No-go paradigm

Brain region Hemisphere MNI coordinates Cluster size Peak voxel Value

Insular/IFG R 32  16   2 212 0.020847

Inferior temporal gyrus R 48 -72  -4 98 0.017735

Superior frontal gyrus R 24  54  10 182 0.018687

Putamen L -22   8   6 127 0.019816

DLPFC  R 40  34  24 180 0.021783

IFG, opercular part R 46  18  32 266 0.024922

Angular R 50 -54  28 238 0.021796

DLPFC L -40  22  38 114 0.021692

Middle cingulate gyrus R/L 4  10  46 98 0.017317

Inferior Parietal Lobule R 40 -56  44 200 0.019583

SMA R/L 0   0  60 95 0.024901

IFG: inferior frontal gyrus; SMA: supplementary motor area; DLPFC: dorsolateral prefrontal cortex

Table S5.2 Significant activations resulting from the meta-analysis of Stop-signal paradigm

Brain region Hemisphere MNI coordinates Cluster size Peak voxel Value

Insular/IFG R 36 20 -4 2050 0.066141

Fusiform L -40 -60 -12 252 0.026161

Insular/IFG L -38  18  -6 690 0.062398

Inferior parietal lobule R 48 -44  40 1011 0.038367

Thalamus R 10 -10   2 812 0.045329

Supramarginal gyrus/ 
Inferior parietal lobule 

L -58 -46  28 601 0.032832

DLPFC R 36  46  20 200 0.024995

Middle cingulate gyrus R/L 2 -24  30 181 0.031727

SMA R 6  24  34 861 0.042154

IFG: inferior frontal gyrus; SMA: supplementary motor area; DLPFC: dorsolateral prefrontal cortex
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Table S5.3 Estimation of spatial similarity between gene expression maps.

Threshold\Donor ID9861 ID10021 ID12876 ID14380 ID15496 ID15697

500 0.07(0.24) 0.03(0.26) 0.08(0.26) 0.02(0.28) 0.06(0.29) 0.07(0.29)

1000 0.07(0.24) 0.03(0.26) 0.09(0.26) 0.03(0.28) 0.07(0.29) 0.08(0.29)

1500 0.07(0.24) 0.03(0.26) 0.09(0.26) 0.03(0.28) 0.07(0.29) 0.08(0.29)

2000 0.08(0.24) 0.03(0.26) 0.10(0.26) 0.03(0.28) 0.07(0.29) 0.08(0.29)

Mean (standard deviation)

Table S5.4 Estimation of the significance of overlap genes under the restriction of spatial similarity.

Threshold Real overlap Significance
Random overlap 

(mean)

Random overlap 

(standard deviation)

500 145 P<0.001 12.01 3.32

1000 445 P<0.001 48.35 6.62

1500 808 P<0.001 108.89 9.7

2000 1212 P<0.001 193.28 12.3

Table S5.5 Estimation of the significance of overlap genes based on permutated statistical maps.

Threshold Real overlap Significance
Permutated overlap 

(mean)
Permutated overlap 
(standard deviation)

500 145 P<0.01 48.62 25.14

1000 445 P<0.01 190.41 70.43

1500 808 P<0.01 405.04 113.70

2000 1212 P<0.01 667.30 147.39
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Table S5.6 Gene Ontology Enrichment Analysis results of the “inhibition-related” genes

GO NS
en-
rich-
ment

name
ratio_
in_
study

ratio_
in_
pop

p_un-
corrected

depth
study_
count

p_fdr_bh

GO:0007218 BP e
neuropeptide 
signaling 
pathway

19/779 101/20913 5,3E-09 6 19 3,7E-05

GO:0007268 BP e
chemical 
synaptic 
transmission

30/779 239/20913 6,2E-09 7 30 3,7E-05

GO:0071805 BP e
potassium ion 
transmembrane 
transport

17/779 114/20913 1,1E-06 8 17 0,00434

GO:0007155 BP e cell adhesion 38/779 463/20913 5,3E-06 2 38 0,01603

GO:0007165 BP e
signal 
transduction

60/779 898/20913 1,2E-05 4 60 0,02976

BP: Biological Processes

Table S5.7 Disease associations of the “inhibition-related” genes

Name pValue FDR B&H FDR B&Y Bonferroni
Genes 
from 
Input

Genes in 
Annotation

Schizophrenia 1,92E-07 5,15E-04 4,37E-03 5,15E-04 104 1537

Bipolar Disorder 5,85E-07 7,86E-04 6,66E-03 1,57E-03 61 723

Alcoholic 
Intoxication, Chronic

4,58E-06 4,10E-03 3,48E-02 1,23E-02 40 396

Unipolar Depression 1,33E-04 8,94E-02 7,58E-01 3,58E-01 39 430

Epilepsy 1,85E-04 8,95E-02 7,59E-01 4,98E-01 47 578

Major Depressive 
Disorder

2,22E-04 8,95E-02 7,59E-01 5,96E-01 43 509

Autistic Disorder 2,33E-04 8,95E-02 7,59E-01 6,27E-01 48 601

Seizures, Focal 6,19E-04 2,08E-01 1,76E+00 1,66E+00 17 113

Generalized seizures 2,67E-03 7,96E-01 6,75E+00 7,16E+00 16 112

Epileptic Seizures 3,33E-03 8,95E-01 7,58E+00 8,95E+00 15 101

Mental disorders 5,58E-03 1,16E+00 9,84E+00 1,50E+01 29 320
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Mood Disorders 8,09E-03 1,16E+00 9,84E+00 2,18E+01 28 309

Withdrawal 
Symptoms

9,48E-03 1,16E+00 9,84E+00 2,55E+01 12 72

Neuroblastoma 1,15E-02 1,16E+00 9,84E+00 3,09E+01 94 1683

Gustatory seizure 1,26E-02 1,16E+00 9,84E+00 3,38E+01 14 99

Atonic Absence 
Seizures

1,26E-02 1,16E+00 9,84E+00 3,38E+01 14 99

Olfactory seizure 1,26E-02 1,16E+00 9,84E+00 3,38E+01 14 99

Visual seizure 1,26E-02 1,16E+00 9,84E+00 3,38E+01 14 99

Seizures, Sensory 1,26E-02 1,16E+00 9,84E+00 3,38E+01 14 99

Generalized Absence 
Seizures

1,26E-02 1,16E+00 9,84E+00 3,38E+01 14 99

Seizures, Clonic 1,26E-02 1,16E+00 9,84E+00 3,38E+01 14 99

Single Seizure 1,26E-02 1,16E+00 9,84E+00 3,38E+01 14 99

Jacksonian Seizure 1,26E-02 1,16E+00 9,84E+00 3,38E+01 14 99

Nonepileptic 
Seizures

1,26E-02 1,16E+00 9,84E+00 3,38E+01 14 99

Non-epileptic 
convulsion

1,26E-02 1,16E+00 9,84E+00 3,38E+01 14 99

Vertiginous seizure 1,26E-02 1,16E+00 9,84E+00 3,38E+01 14 99

Absence Seizures 1,26E-02 1,16E+00 9,84E+00 3,38E+01 14 99

Seizures, 
Somatosensory

1,26E-02 1,16E+00 9,84E+00 3,38E+01 14 99

Seizures, Auditory 1,26E-02 1,16E+00 9,84E+00 3,38E+01 14 99

Drug Dependence 1,30E-02 1,16E+00 9,84E+00 3,49E+01 19 170

Myoclonic Seizures 1,41E-02 1,18E+00 1,00E+01 3,80E+01 14 100

Epileptic drop attack 1,41E-02 1,18E+00 1,00E+01 3,80E+01 14 100

Mental Depression 1,45E-02 1,18E+00 1,00E+01 3,91E+01 41 559

Drug Withdrawal 
Symptoms

1,70E-02 1,34E+00 1,14E+01 4,57E+01 10 53

Tonic Seizures 1,78E-02 1,36E+00 1,15E+01 4,79E+01 14 102

Depressive disorder 1,86E-02 1,36E+00 1,15E+01 4,99E+01 43 604
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Figure S5.1 Comparisons between BrainMap-based and Neurosynth-based co-activation map for the 
emotion regulation studies MACM: meta-analytic connectivity modelling; IFG: inferior frontal gyrus; MCC: 
middle cingulate gyrus; IPL: inferior parietal lobule; SMA: supplementary motor area
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Figure S5.2 Comparisons between BrainMap-based and Neurosynth-based co-activation map for 
the memory control studies MACM: meta-analytic connectivity modelling; DLPFC: dorsolateral prefrontal 
cortex; IPL: inferior parietal lobule; SMA: supplementary motor area
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Figure S5.3 ALE meta-analysis of the Default-Mode Network (Task-negative network) 
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Figure S5.4 Comparison of diseases association between “inhibition-related” genes and “DMN-related” 
genes.
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At the beginning of this thesis, I discussed the ideas of process and strength dynamics of 

memory. These dynamics can be measured non-invasively in the encoding-retrieval network 

based on the principle of pattern reinstatement. They also have close relationships with other 

core cognitive operations, such as emotion perception and cognitive control. Here, I answered 

specific questions regarding the neural dynamics of memories:

1.  How do we transform continuous experience into discrete memories? 

2.  How does the brain flexibly switch between memory retrieval and memory control?

3.  How does memory modulation re-organize memory traces and change their memory  

 strength after overnight consolidation? 

4.  Why are changes in memory strength also accompanied by alterations of emotional  

 intensity?

I will start with a summary of our experimental findings in the order of the above questions. Then, 

I will seek to deliberate the relationship between our findings and existing literature. Next, I will 

attempt to discuss how future studies could be conducted to address new questions raised by 

our current results. Lastly, a general conclusion will be presented.
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Summary of findings

I presented four experimental chapters on the topic of process and strength dynamics of 

memories. In brief, we used fMRI in healthy human subjects to elicit brain activity during different 

memory tasks, and combined approaches from genetics and machine learning. Here I will give 

a summary of our main findings.

1. How do we transform continuous experience into discrete memories? 

How do we encode continuous information is critical for subsequent retrieval. Theories of event 

memories proposed that different neural states are used to represent discrete events. We 

demonstrated that successful encoding of continuous information was dependent on events 

being represented with dissimilar activity patterns in a network centered on the hippocampus 

and medial prefrontal cortex. At the same time, we found the potential neural correlates for 

event integration: similar connectivity patterns of these regions linked events and preserved the 

narrative order in which they were encoded (Chapter 2).

2. How does the brain flexibly switch between memory retrieval and memory control?

During a continuous task, sometimes we need to switch between two or more task demands. 

This process is particularly challenging for the brain when the switch is between memory retrieval 

and memory control, which requires the need to coordinate two opposite neural states with 

partly overlapping neural networks. As the classical task-switch studies, we found the effect that 

preceding mental processing has an impairing effect on the current processing. We also found 

that the switch between retrieval and control involves large-scale adaptations between memory 

retrieval and inhibitory control networks. This adaptation is less flexible immediately after the 

task switching and associated with behavioral switch costs. Thus, we reasoned that the timely 

reconfiguration between memory and control networks is the key to flexible memory processing 

(Chapter 3).

3. How does the memory modulation re-organize memory traces and change their memory 

strength after overnight consolidation? 

Memory modulation immediately after their formation can modify neural representations of 

memory traces and change their strength. We found that similar neural effects can be observed 

after initial consolidation (i.e., 24 hours after encoding). Specifically, repeated retrieval reduced 

overall activity amplitude, but seems to promote episode-unique mnemonic representations in 

visual processing and parietal regions. In contrast, repeated memory control was associated 

with the reduced lateral prefrontal activity, but relative intact mnemonic representations (Chapter 

4).
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4. Why are changes in memory strength also accompanied by alterations of emotional 

intensity?

Memory modulations such as memory control can alter not only memory accessibility and neural 

representations, but also the valence of these memory traces. We found that memory control and 

emotion regulation are supported by the same frontal-parietal-insular network, which is involved 

in inhibitory control. Moreover, neuroimaging-gene expression analysis identified the association 

between task-induced brain activations and a set of “inhibition-related” genes. These genes were 

reported to be associated with neuronal transmission and risk for major psychiatric disorders, as 

well as epilepsy and alcohol dependence (Chapter 5).

Memory dynamics: integration of literature and our findings

Dynamics of segmentation and integration contribute to memory formation

Successful memory formation in humans was studied intensively by the subsequent memory 

paradigm (Kim, 2011). It is well established that increased activation in the hippocampus, 

MTL, and prefrontal cortex is the neural signature of successful encoding (Brewer et al., 1998; 

Fernández et al., 1999; Wagner et al., 1998). Because unrelated to-be-remembered materials 

are often presented in isolation, temporal dynamics during the continuous experience are largely 

ignored in previous investigations.

In Chapter2, combining naturalistic stimuli and MVPA, we revealed two complementary 

neural dynamics (i.e., event segmentation and integration). Related neural processing in the 

hippocampus and mPFC could predict subsequent retrieval success and order. It is noticeable 

that this is in line with one recent report which investigated the neural coding of continuous 

experience in rodents (Sun et al., 2020). They reported “event-specific rate remapping” (ESR) 

cells in CA1 simultaneously tracked subdivisions of a continuous experience (i.e., events) and 

their sequential relationship. Results from Chapter2 suggests that humans may use a similar 

code for everyday-like memory, and this neural code exists not only in the hippocampus but also 

in several prefrontal regions, mainly in the mPFC.

While previous neuroimaging studies demonstrated the role of human hippocampus in event 

segmentation (Baldassano et al., 2017; Ben-Yakov et al., 2013; Ben-Yakov & Dudai, 2011; 

Ben-Yakov & Henson, 2018; DuBrow & Davachi, 2016; Williams et al., 2019), and in establishing 

links between different events (DuBrow & Davachi, 2016; Benjamin J Griffiths & Fuentemilla, 2020; 

Silva et al., 2019; Sols et al., 2017), the relationship these neural representational processing and 

subsequent memory performance remain unclear. 

We showed that neural correlations of event segmentation and integration in the hippocampus 

and neocortical regions (mainly mPFC) during encoding contribute to successful episodic 

memory formation. Here, the hippocampus may use pattern separation-like neural processes to 
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represent distinct episodic events during the continuous experience (Bakker et al., 2008; Yassa 

& Stark, 2011). The role of mPFC in the continuous event processing may relate to its function 

of establishing links between elements across time and space: for instance, memory integration 

(Preston & Eichenbaum, 2013; Schlichting et al., 2014; Schlichting & Preston, 2015; Zeithamova 

et al., 2012), knowledge accumulation (Berkers et al., 2018; Kumaran et al., 2009), and schema 

learning (van Kesteren et al., 2013, 2014; Van Kesteren et al., 2010). 

To summarize, we highlighted the role of hippocampal and medial prefrontal event segmentation 

and integration during the temporal dynamics of memories and how they contribute to naturalistic 

memory formation. Our experimental results showed that subsequent memory retrieval could 

be predicted by the interaction between “units” of encoding: separate neural representation of 

these “units” are the neural substrates of segmentation, and consistent context encoding across 

“units” supports integration.

Task switching-related process dynamics 

Based on the experimental results from Chapter 3, we proposed that the task-switching paradigm 

is another window to observe process dynamics and their related neural reconfiguration. During 

task switching, suboptimal neural coordinations across large-scale brain networks could limit the 

executive control resource that can be deployed for certain cognitive processing, in our case, 

memory retrieval, and control. 

We found the dynamic interaction between memory retrieval and memory control when 

participants were required to switch between these two opposite demands. Specifically, we 

found that it is more challenging for participants to control unwanted memories when the task 

demand just switched from retrieval to control. This result can be integrated with the broader 

literature of task switching (Jersild, 1927; Meiran, 2010; Monsell, 2003; Spector & Biederman, 

1976) as a specific kind of switch cost between memory retrieval and control. Also, it suggests 

that different task demands, as processing units, interact with each other. These interactions 

have behavioral relevance and could be the source of switch costs.

Our fMRI results provided a new perspective of neural state transitions to understand the 

process dynamics during task switching. First, we used the multivariate decoding method to 

show that distributed fMRI signals across the inhibitory control and memory retrieval network can 

be used to differentiate two opposite task demands (i.e., memory retrieval and control), although 

all trials remained highly consistent throughout the experiment at the perceptual level. It is well 

established that human brain could demonstrate diverse brain states during different cognitive 

tasks (Cocuzza et al., 2019; Gonzalez-Castillo et al., 2015; Sadaghiani et al., 2015; Shine et al., 

2016; Shine & Poldrack, 2018; Westphal et al., 2017). Our decoding results added additional 
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evidence for this line of research. Second, initial evidence suggested that transitions between 

task-specific neural states have behavioral relevance: participants who showed less distinct 

neural states across tasks are more likely to perform worse in these tasks (Gonzalez-Castillo 

et al., 2015). However, that study design contained only a limited number of task “units” and 

transitions, limiting the ability to probe deeply into the state transitions between cognitive tasks. 

We compared the neural representations of task demands between the switch and non-switch 

periods. By applying the decoding method to the switch and non-switch periods separately, we 

showed that the decoder performed less accurately when participants were just instructed to 

just switch to another task demand. In other words, immediately after the shift in task demand, 

the decoder was more likely to mistakenly classify the neural state as the previous state instead 

of the current new state. Because our task only contained two opposite task demands, this 

delayed neural transition could be even more detrimental for optimal behavioral performance. 

Our following analyses confirmed it by associating delayed transitions to worse performance 

on the trial-by-trial basis. Our results, together with the previous study (Gonzalez-Castillo et al., 

2015), demonstrated that if the underlying neural state is not well configurated for the current 

task, participants’ task performance is compromised.

In summary, Chapter 3 of this thesis investigated the process dynamics of neural states 

transitions during task-switching. We revealed how the interaction between opposite processing 

“units” (i.e., memory retrieval and memory control) generates behavioral switch costs. If the 

brain cannot timely reconfigure in time its neural states between these “units,” behavioral 

performances are compromised. 

Retrieval practice and memory control induces different strength dynamics after 

consolidation

After memory formation, memory traces could be modulated in different ways (Phelps & 

Hofmann, 2019). Among them, behavioral modulations such as retrieval practice (Karpicke & 

Blunt, 2011; Roediger III & Butler, 2011) can enhance memory traces while memory suppression 

can disrupt them (Michael C Anderson & Green, 2001; Michael C Anderson & Hanslmayr, 2014). 

However, after initial consolidation, what happens to the neural representations of individual 

memory traces during and after different kinds of modulations is still under ongoing investigation. 

In Chapter 4, we investigated this question with specific interests in how established memories 

(i.e., 24 hours after initial formation) are dynamically modulated by retrieval and suppression 

using a two-day fMRI design.

A theoretical framework of how retrieval practice can help to create long-lasting memories is 

provided by a fast memory consolidation hypothesis of memory retrieval (Antony et al., 2017). 

This hypothesis suggests that online retrieval triggers the fast reactivation of associative 
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information, supporting the creation of hippocampal-neocortical representation (Antony et al., 

2017). Ferreira and co-workers reported rapid increases mPFC activity, and slow hippocampal 

disengagement across retrieval attempts (Ferreira et al., 2019), which is partly consistent with 

neural changes during memory consolidation (Frankland & Bontempi, 2005; Takashima et al., 

2006, 2009). Critically, using multivariate fMRI methods, they demonstrated that episodic-unique 

information was enhanced in the parietal cortex after retrieval practice. Building on this work 

(Ferreira et al., 2019) and previous literature of retrieval-mediate learning (Eriksson et al., 2011; 

Kuhl et al., 2010; Nelson, Arnold, Gilmore, & McDermott, 2013; G. van den Broek et al., 2016; G. 

S. E. van den Broek et al., 2013; Maria Wimber et al., 2008, 2011; Wing et al., 2013; Wirebring 

et al., 2015), we demonstrated that, for initially consolidated memories, reported neural effects 

of retrieval practice on memory representations could also be observed, and we found a similar 

decreasing hippocampal activity during and after the retrieval practice. Furthermore, our data 

showed the enhanced episodic-unique neural representations in the visual processing areas and 

precuneus, which in turn associated with decreased retrieval-related univariate activity amplitude 

of the same regions. This association may reflect a process during the retrieval practice that 

suppresses redundant neural activity, and thus, only the fine-grained neural patterns are 

reinstated, enabling more distinctive memory representations with higher fidelity.

Understanding how memory suppression can cause motivated forgetting of existing memory 

traces is not only relevant for understanding the flexible nature of memories during modulation 

(Kroes & Fernández, 2012) but also has its clinical values for memory-related psychotherapy 

and psychopathology (Dillon & Pizzagalli, 2018; Mary et al., 2020). In most memory suppression 

literature, memory traces were suppressed immediately after their initial formation (Michael 

C Anderson & Green, 2001; Michael C Anderson & Hanslmayr, 2014). However, unwanted 

memories (usually traumatic memories) which are needed to be suppressed are usually remote, 

and therefore it is more challenging to modify them. Indeed, a recent report showed that 

initially consolidated emotional memories are more resistant to suppression and retain larger 

emotional reactivity compared to newly-formed ones. At the same time, Yunzhe and colleagues 

demonstrated a shift of hippocampally centered representations to distributed neocortical 

memory representations after the memories have been consolidated (Y. Liu et al., 2016). 

Similarly, we found the limited behavioral memory suppression effect. Our design allowed us 

to examine the neural processes further when participants try to retrieve those memories which 

were suppressed during the TNT. We revealed that retrieving suppressed memories involves 

lower prefrontal engagement, but rather intact item-specific neural representations during the 

subsequent memory retrieval. The observed prefrontal effect during subsequent retrieval might 

be a long-lasting effect of reduced prefrontal activity during suppression (Brendan E Depue 

et al., 2007) across repeated attempts and suggests that limited cognitive control resources 

hamper retrieval.
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In summary, Chapter 4 of this thesis showed how different memory modulations techniques 

induce strength dynamics and their different interactions with initial consolidation. After 

consolidation, active retrieval can further promote the episodic-unique memory representations 

in neocortical regions, while memory suppression demonstrates a modest effect on memory 

performance and underlying neural representations. I conclude that consolidation and retrieval 

practice seems to have an additive effect on creating long-lasting memories, while consolidation 

partly prevents the modification induced by suppression.

Dual modulation of memory and emotion: from strength dynamics to valence dynamics

Recent evidence suggested that memory suppression, controlling the tendency to retrieve during 

retrieval, maybe act as another routine for emotion regulation. Suppression can disrupt existing 

memory representations by the inhibitory processes, causing the failures in explicit memory 

retrieval (Michael C Anderson & Green, 2001; Michael C Anderson & Hanslmayr, 2014) and 

subconscious processing (Gagnepain et al., 2014). The dynamical change of memory strength 

may also be associated with the reductions in the emotional reactivity of the memory contents 

(De Vito & Fenske, 2017). This effect does not simply result from the repeated suppression, but 

more likely from implicit emotion regulation (Engen & Anderson, 2018). The dual regulation of 

memory content and its valence was hypothesized to be supported by similar neural networks 

(Engen & Anderson, 2018), and an experiment showed that both hippocampal and amygdalar 

activity is suppressed in parallel by the DLPFC  (Gagnepain et al., 2017). The role of dorsomedial 

PFC in the conjunction between memory retrieval and emotion regulation has been highlighted 

separately from the perspective of aging (Ford & Kensinger, 2017, 2018).

The interplay between memory and emotion is one of the central topics of memory research, 

while the number of conducted research seems asymmetric (Kensinger & Ford, 2020). 

Specifically, much of prior research has emphasized the effect of emotion on memory (e.g., 

emotional memories are more frequently and more vividly remembered than neutral memories 

(Dewhurst & Parry, 2000; Ochsner, 2000)), but not the other way around. Depending on task 

instructions, retrieval of emotional memories can also affect the subsequent emotion perception. 

For example, emotional memory retrieval can be used as a strategy of emotion regulation (Gross, 

1998) at the time of retrieval (Pasupathi, 2003; Pillemer, 2009).

Our results from Chapter 5 provided a comprehensive investigation of common neurobiological 

underpinnings of memory control and emotion regulation using methods from neuroimaging 

and imaging-genetics. I propose that the strength dynamics of memories can be considered 

together with valence dynamics within a two-dimensional space. The movement of one particular 

memory trace within the space is supported by the common neurobiological correlations of 

inhibitory control. Therefore, improvement of inhibitory control may be beneficial for specifical 
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cognitive processing such as memory control and emotion regulation.

Summary of memory dynamics 

In the first two experimental chapters (Chapters 2-3) of the thesis, I investigated how the 

brain uses non-overlapping neural representations for different processes within a continuous 

experience (i.e., process dynamics). In Chapter 2, different episodic events were represented 

by separate neural states. At the same time, these separate neural states were further integrated 

across time forming a coherent narrative (Figure 6.1.A). In Chapter 3, different memory-related 

task demands are represented by distinct neural states.  During the switch from one to the 

other task, the brain adapts dynamically to the corresponding state (Figure 6.1.B). These 

results together call for focusing on interactions between different mnemonic processes that are 

executed close in time and how these interactions are related to memory performance. 

With studies in Chapters 4 and 5, we aimed at revealing the neural changes underlying the 

strength dynamics. In Chapter 4, we demonstrated how two memory modulation techniques 

either increase or decrease memory strength and how they interact with memory consolidation 

(Figure 6.1.C). In Chapter 5, we showed that the dual modulation of memory strength and 

emotional intensity is supported by similar neurobiological correlates (Figure 6.1.D). In sum, 

these results suggest that memory “engrams” should be viewed as states that could be 

susceptible to change, and contain multiple related elements of one memory (e.g., emotion).

Although not investigated in this thesis, process- and strength dynamics may interact with each 

other. For example, people may have a daily routine from getting up, washing his/her face, 

drinking coffee, taking the train before finally sitting at the office desk finally. And then one day, 

he/she witnesses a tragic car accident while commuting. In the following days or even months, 

he/she will keep retrieving the memory of the accident while taking the train.  In this way, the 

memory representation gets increasingly stronger. At the same time, because taking the train 

belongs to a continuous experience, the strengthening memory will also affect the strengths 

of other adjacent memories, possibly enhancing all neighboring (e.g., biking from home to the 

train station). Interactions between strength dynamics and process dynamics together generate 

the rich collection of episodic memories with corresponding temporal and strength information. 
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Figure 6.1 Role of two memory dynamics in specific memory processes. (A) During encoding of the 
continuous experience, processing units are events that to be encoded by non-overlapping neural states. The 
brain simultaneously performs the segmentation and integration for episodic events (Chapter2). (B) When 
the brain performs continuous task-switching, processing units are “task demand” for each time window. The 
brain remains in the same neural state for the same task demand but needs to reconfigure its neural state for 
a different task demand during switching (Chapter3). (C) For a specific memory trace, external modulations 
can lead to strength dynamics: retrieval practice can increase its memory strength, while memory control can 
decrease its strength (Chapter4). (D) After memory control, the dynamics of memory strength of a memory 
trace (from high to low) could also associate with the reduction in its emotional intensity (Chapter5).

The work presented in this thesis has answered several research questions but also raised new 

questions. I will discuss them in the following sections and suggest alternative methods or future 

studies with a new experimental design.

Future directions

1. Towards the individualized nested event memory processing in the brain 

In Chapter 2, we investigated the relationship between neural similarities across event 

boundaries and episodic memory formation. However, the event boundary data was determined 

by a separate group of participants whose fMRI data is not available. Although the approach is 

widely used in the literature and demonstrated optimal correspondence with neural responses 

(Baldassano et al., 2017; Ben-Yakov & Henson, 2018; Janice Chen et al., 2017), current analyses 

were based on the assumption that individual differences in event perception can be ignored. This 

assumption was challenged by behavioral evidence: individual differences in behavioral event 
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segmentation have been observed and were associated with memory retrieval performance 

(Sargent et al., 2013). To reveal individual differences in event processing, fMRI data, and event 

boundary data should be collected from one large group of participants with deep phenotyping 

of relevant variables.

Also, these boundaries were determined at the coarsest time scale, with a duration of about 

1 minute per event. Current coarse boundaries can only allow us to evaluate the subsequent 

memory performance for entire events, but not sub-elements within them. Ideally, the continuous 

experience would be segmented at a different level. For example, the highest conceptual level 

with the complete episodes as events or lowest perceptual level with the continuous presentation 

of one visual element (e.g., a dog) as an event. These boundaries could form a nested event 

structure with one high-level event is the combination of several low-level events. Aside from 

events labeled by human participants, methods from computer vision and natural language 

processing can be adapted to analyze the content of a movie (Rohrbach et al., 2013; Töreyin 

et al., 2006), and event boundaries can be determined in a data-driven way based on different 

models (e.g., item model, context model, character model, and so on). Modeling the nested event 

structure with fMRI data can give us more insights into the region-specific timescales of changes 

in cortical patterns changes during the continuous perception of a narrative (Baldassano et al., 

2017).

2. Memory-related pattern reinstatements in the human brain

In Chapter 4, we used RSA-based MVPA to detect episode-unique pattern reinstatements 

during memory retrieval. Even though MVPA is a powerful method to probe the reinstatement of 

episodic memories (Xue, 2018), we need to evaluate each result critically and be fully aware of 

the limitation of fMRI-based MVPA, compared to other invasive methods (Dubois et al., 2015).

First, comprehensive investigations should be conducted to examine the relationship between 

different fMRI-based MVPA measures and memory retrieval outcomes (e.g., speed, accuracy, 

subjective confidence, temporal order). Future research could try to apply both RSA-based 

MVPA and classification-based MVPA to the same dataset and compare their results. It is 

possible that different MVPA indexes, which were thought to all measure pattern reinstatements, 

may track different aspects of memory. Moreover, because MVPA can be influenced by 

many factors, such as experimental setup (Coutanche & Thompson-Schill, 2012; Mumford 

et al., 2014), preprocessing-and analysis choices (de Beeck, 2010; Haynes, 2015), choice of 

regions-of-interests (Kriegeskorte et al., 2006), and signal-to-noise ratio (A. T. Smith et al., 2011) 

(for an in-depth discussion, see Chapter 4). Future studies can try different analytic choices, 

to see how they might affect the results, and aim for developing a relative optimal pipeline for 

measuring pattern reinstatement signals in the brain.
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Second, fMRI-based measures of pattern reinstatements are not suitable to detect the fine-grained 

temporal information during memory retrieval. Memory-related pattern reinstatements are not 

only about reactivating the same neural patterns that were present when the memory was 

first experienced in the same region (i.e., spatial patterns) (Janice Chen et al., 2017; Kent & 

Lamberts, 2008; S.-H. Lee et al., 2019; Polyn et al., 2005; Tulving, 1984; Xue, 2018), but also 

how these patterns unfold over time (i.e., temporal patterns). Although the role of sequential 

replay in memory retrieval has been proposed (Carr et al., 2011) and supported by animal data 

from spatial memory paradigms (Pfeiffer, 2020; Takahashi, 2015), it is until recently that evidence 

from human electrophysiology link it with episodic memory retrieval (Michelmann et al., 2016, 

2019; Vaz et al., 2020). There is an exciting avenue for future research: how the retrieval of the 

same memory trace could induce distinct pattern reinstatements in the spatial and temporal 

domain? What is the relationship between the spatial and temporal domains?  Simultaneous 

EEG-fMRI recording is a powerful method to answer these questions and was already used by 

one pioneering work (Benjamin James Griffiths et al., 2019).

3. Dynamical brain state transitions: all-or-none or continuous process?

In Chapter 2, we used event boundaries to separate neural processing for different episodic 

events: the time points before and after a certain boundary belong to two states. In Chapter 3, 

we used a time-resolved multivariate binary neural decoder to track the transition between two 

neural states. Therefore, in both studies, we assumed that these brain state transitions during the 

task are all-or-none processes, and without the mixture of two or more states at the same time.

Let us first assume that brain state transitions indeed follow the all-or-none principle. Then, the 

critical question is, how can we better detect the exact point of state transitions. There are at least 

two advanced methods available to detect the exact point of transitions that define the states 

based on continuous time series. For instance, the Hidden Markov Model (HMM) (Blunsom, 

2004) can be used to identify hidden states and their boundaries through continuous data. This 

method has been used in identifying distinct neural representations of events in participants that 

were watching a movie (Baldassano et al., 2017). Alternatively, spatial standard deviation (SSD), 

together with the clustering method can be used to detect the time points transition (Y. B. Lee et 

al., 2019). This method successfully detected the hidden states within the dynamically changing 

of fMRI brain network states. 

Another more likely possibility is that these transitions are continuous: at a certain time-point, 

the brain can be in both two (or more) states, but the balance between them changes over time. 

This idea is similar to the storage of items in the working memory: several items can be held at 

the same time, but their relative strength may differ based on the task demands. Results from 

Chapter 2 and Chapter 3 already suggested the potential existence of continuous processing. 

In Chapter 2, we found that connectivity patterns persist across event boundaries, potentially 
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serving as the neural correlates of event integration. In Chapter 3, we found that brain states 

usually cannot switch immediately according to the task demand at hand. That is to say, near the 

switching boundaries, two brain states may compete with each other for mental resources. Future 

research should try to identify more evidence for continuous processing, and whether there is 

a boundary condition between the all-or-none and a continuous transition during continuous 

cognition. Nevertheless, the fMRI signal has its internal limitations when the research question is 

about precise temporal information. Future studies may also measure the neural activity during 

similar paradigms using electroencephalography (EEG), magnetoencephalography (MEG), or 

intracranial EEG.

Conclusions

Our results provide a perspective on the dynamic nature of memory in terms of temporal and 

strength. For the temporal dynamics, our experiments revealed that during the continuous 

experience, the brain uses separate neural states to segment information into events and 

simultaneously binds them into a coherent narrative by context encoding. During fast switches 

between memory retrieval and memory control, the brain needs to reconfigure its neural states 

in time. Otherwise, the remaining state of retrieval may cause failures in memory control. For the 

strength dynamics, after initial consolidation, active retrieval seems to promote episode-unique 

mnemonic representations, leading to enhanced memory strength. By contrast, memory control 

disengages prefrontal involvement during retrieval, causing compromised memory strength. 

These changes in memory strength are associated with changes in the emotional intensity of 

individual memory traces. This dual modulation phenomenon is supported by the common 

inhibitory control network and corresponding transcriptional correlates. Future research on 

memory dynamics might lead to non-pharmacological, cognitive approaches that can enhance 

the encoding efficiency and persistence of everyday memories or can modify traumatic memories 

and their emotional impacts. Such methods could potentially provide both fundamental and 

applied knowledge for memory-related symptoms in memory disorders and affective disorders.
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Research data management

Ethics

This thesis is based on results from (healthy) human experiments, which were conducted in 

accordance with the principles of the Declaration of Helsinki and followed the applicable laws 

and ethical guidelines. Research Data Management was conducted according to the FAIR 

principles. The paragraphs below specify in detail how this was achieved. Local data acquisition 

(Chapter3 and Chapter4) was approved by the medical and ethical review board Committee on 

Research involving Human Subjects Region Arnhem Nijmegen, Nijmegen, the Netherland. For 

the open-access dataset used (Chapter2), the experimental procedures were approved by the 

Princeton University Institutional Review Board.

Findable Accessible

All collected electronic data was archived at the central project archive of the Donders Centre for 

Cognitive Neuroimaging, and further shared publicly using the Donders Repository (https://data.

donders.ru.nl/). The project was named as Tracking the involuntary retrieval of unwanted memory 

in the human brain with functional MRI in the Repository (https://doi.org/10.34973/5afg-7r41).

Chapter DAC RDC DSC
DSC 

License
Note

2 NA NA

http://arks.princeton.
edu/ark:
/88435/

dsp01nz8062179

CC-BY-
NC

Open 
Dataset

3 DAC_3013067.01_584 RDC_3013067.01_003
https://doi.

org/10.34973/
5afg-7r41

RU-DI-
HD-1.0

Local Data 
Acquistion

4 DAC_3013067.01_584 RDC_3013067.01_003
https://doi.

org/10.34973/
5afg-7r41

RU-DI-
HD-1.0

Local Data 
Acquistion

5 NA NA
https://doi.

org/10.17605/
OSF.IO/6WZ2J

CC-BY-
NC

Meta-
analysis

DAC=Data acquistion Collection; RDC=Research Document Collection; DSC=Data Sharing Collection

Within each experimental chapter, there is a dedicated section for the Data and Code Availability. 

There, we provided detailed information and links for data and code sharing. Furthermore, an 

Open Science Framework (OSF) folder was created for each chapter to share intermediate 

results and in-house scripts of critical data analyses. Technical supports to use these scripts 

are available from the corresponding author on reasonable request. No paper materials were 
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collected from participants during experiments. Data beyond the neuroimaging and behavioral 

log files (e.g., questionnaires) were collected using the online electronic data management 

website called Castor EDC. Data were exported from Castor EDC to comma-separated value 

(.csv) files and archived together with other data at the central project archive.

For chapters 2, 3, 4 and 5 research data have also been stored on the project/networkdrive 

(respectively…). These data were accessible to all members involved in the project. After 

finalization of the project data were removed from the project/networkdrives. The maniscript of 

chapter 1 and 2 is still under revision and review respectively. Informed consent was obtained on 

paper following the Centre procedure. The forms are archived in the central archive of the Centre 

for 10 years after termination of the studies.

Privacy

The following measures were used to protect the privacy of the participants: (1) unique individual 

subject code of the participant recruitment system was used as participant identity. (2) This 

code corresponded with subject ID within specific research projects. (3) The correspondences 

between subject IDs and individual subject codes were kept separate from any research data. 

(4) Sensitive personal data collected during the experiments (e.g., e-mail address, the exact date 

of birth, address of family doctors (i.e., GP)), which are not relevant for research questions, were 

removed from the Castor EDC half a year after the end of data acquisition.  
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Summary of thesis

[English]

I presented four experimental chapters on the topic of process and strength dynamics of 

memories. In brief, we used fMRI in healthy human subjects to elicit brain activity during different 

memory tasks, and combined approaches from genetics and machine learning. Here I will give 

a summary of our main findings.

1. How do we transform continuous experience into discrete memories? 

How do we encode continuous information is critical for subsequent retrieval. Theories of event 

memories proposed that different neural states are used to represent discrete events. We 

demonstrated that successful encoding of continuous information was dependent on events 

being represented with dissimilar activity patterns in a network centered on the hippocampus 

and medial prefrontal cortex. At the same time, we found the potential neural correlates for 

event integration: similar connectivity patterns of these regions linked events and preserved the 

narrative order in which they were encoded (Chapter 2).

2. How does the brain flexibly switch between memory retrieval and memory control?

During a continuous task, sometimes we need to switch between two or more task demands. 

This process is particularly challenging for the brain when the switch is between memory retrieval 

and memory control, which requires the need to coordinate two opposite neural states with 

partly overlapping neural networks. As the classical task-switch studies, we found the effect that 

preceding mental processing has an impairing effect on the current processing. We also found 

that the switch between retrieval and control involves large-scale adaptations between memory 

retrieval and inhibitory control networks. This adaptation is less flexible immediately after the 

task switching and associated with behavioral switch costs. Thus, we reasoned that the timely 

reconfiguration between memory and control networks is the key to flexible memory processing 

(Chapter 3).

3. How does the memory modulation re-organize memory traces and change their memory 

strength after overnight consolidation? 

Memory modulation immediately after their formation can modify neural representations of 

memory traces and change their strength. We found that similar neural effects can be observed 

after initial consolidation (i.e., 24 hours after encoding). Specifically, repeated retrieval reduced 

overall activity amplitude, but seems to promote episode-unique mnemonic representations in 

visual processing and parietal regions. In contrast, repeated memory control was associated 

with reduced lateral prefrontal activity, but relative intact mnemonic representations (Chapter 4).
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4. Why are changes in memory strength also accompanied by alterations of emotional 

intensity?

Memory modulations such as memory control can alter not only memory accessibility and neural 

representations, but also the valence of these memory traces. We found that memory control and 

emotion regulation are supported by the same frontal-parietal-insular network, which is involved 

in inhibitory control. Moreover, neuroimaging-gene expression analysis identified the association 

between task-induced brain activations and a set of “inhibition-related” genes. These genes were 

reported to be associated with neuronal transmission and risk for major psychiatric disorders, as 

well as epilepsy and alcohol dependence (Chapter 5).

Conclusions

Our results provide a perspective on the dynamic nature of memory in terms of temporal and 

strength. For the temporal dynamics, our experiments revealed that during the continuous 

experience, the brain uses separate neural states to segment information into events and 

simultaneously binds them into a coherent narrative by context encoding. During fast switches 

between memory retrieval and memory control, the brain needs to reconfigure its neural states 

in time. Otherwise, the remaining state of retrieval may cause failures in memory control. For the 

strength dynamics, after initial consolidation, active retrieval seems to promote episode-unique 

mnemonic representations, leading to enhanced memory strength. By contrast, memory control 

disengages prefrontal involvement during retrieval, causing compromised memory strength. 

These changes in memory strength are associated with changes in the emotional intensity of 

individual memory traces. This dual modulation phenomenon is supported by the common 

inhibitory control network and corresponding transcriptional correlates. Future research on 

memory dynamics might lead to non-pharmacological, cognitive approaches that can enhance 

the encoding efficiency and persistence of everyday memories or can modify traumatic memories 

and their emotional impacts. Such methods could potentially provide both fundamental and 

applied knowledge for memory-related symptoms in memory disorders and affective disorders.
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[Nederlands]

Er worden vier experimentele hoofdstukken over de onderwerpen proces- en sterktedynamiek van 

herinneringen gepresenteerd. Hierin werd gebruik gemaakt van fMRI in gezonde proefpersonen 

om hersenactiviteit tijdens verschillende geheugentaken aan het licht te brengen en combineerde 

we benaderingen uit de genetica en het ‘machine learning’. Onderstaand geef ik een samenvatting 

van onze belangrijkste bevindingen geven. 

1. Hoe transformeren we continue ervaringen in discrete herinneringen?

Hoe we continue informatie coderen is cruciaal voor het later terughalen van de informatie. 

Theorieën over geheugen van bepaalde gebeurtenissen stelden voor dat verschillende neurale 

toestanden worden gebruikt om discrete gebeurtenissen weer te geven.  Wij toonde aan dat 

een succesvolle codering van continue informatie afhangt van verschillende activiteitspatronen 

in een netwerk dat gecentreerd is op de hippocampus en de mediale prefrontale cortex, die elk 

een gebeurtenis representeren. Tegelijkertijd vonden we de potentiële neurale correlaten voor 

de integratie van gebeurtenissen: vergelijkbare connectiviteitspatronen van regio’s verbinden 

gebeurtenissen en behouden de narratieve volgorde waarin ze werden gecodeerd (hoofdstuk 2). 

2. Hoe schakelt het brein flexibel tussen het ophalen van het geheugen en de controle van 

het geheugen?

Tijdens een continue taak moeten we soms switchen tussen twee of meer taakvereisten. Dit 

proces is voor het brein vooral een uitdaging wanneer er een switch gemaakt moet worden 

tussen het ophalen van het geheugen en het controleren van geheugen. Dit is het geval omdat 

dit van het brein vereist om twee tegenovergestelde neurale staten met gedeeltelijk overlappende 

neurale netwerken te coördineren.  Net zoals in de klassieke ‘task-switch’ studies vonden we 

dat voorafgaande mentale verwerking een nadelig effect had op huidige verwerking. Daarnaast 

vonden we dat de switch tussen het ophalen en het controleren van geheugens samengaat met 

grootschalige aanpassingen tussen netwerken verantwoordelijk voor het ophalen van geheugen 

ophalen en remmende controle. Deze aanpassing is minder flexibel direct na de taakwisseling 

en is geassocieerd met gedragsveranderingskosten.  Daarom beredeneerde we dat de 

tijdige her configuratie tussen geheugen- en controlenetwerken belangrijk is voor een flexibele 

geheugenverwerking (Hoofdstuk 3).

3. Hoe reorganiseert geheugenmodulatie geheugensporen en verandert het geheugensterkte 

na nachtelijke consolidatie? 

Geheugenmodulatie direct na de vorming van geheugens kan de neurale representaties 

van geheugensporen wijzigen en de sterkte ervan veranderen. Wij vonden dat na de initiële 

consolidatie (d.w.z. 24 uur na het coderen) soortgelijke neurale effecten kunnen worden 
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waargenomen. Meer specifiek, herhaalde retrieval verminderde de algehele activiteit amplitude 

maar lijkt episode-unieke mnemonische representaties in de visuele verwerking en partiële regio’s 

te bevorderen. Daarentegen werd herhaalde geheugen controle geassocieerd met verminderde 

laterale prefrontale activiteit, maar relatief intacte mnemonische representaties (Hoofdstuk 4).

4. Waarom gaan veranderingen in geheugensterkte ook gepaard met veranderingen in 

emotionele intensiteit?

Geheugenmodulaties zoals geheugencontrole kunnen niet alleen de toegankelijkheid en de neurale 

representaties van geheugen veranderen, maar ook de waarde van deze geheugenprocessen. 

Wij vonden dat geheugen controle en emotieregulatie werden ondersteund door hetzelfde 

frontaal-pariëtaal-insulaire netwerk, welke ook betrokken is bij remmende controle. Daarnaast 

identificeerde we middels een neuro imaging-genexpressie analyse de associatie tussen 

taak-geïnduceerde hersenactivatie en een set “inhibitie-gerelateerde” genen.  Geïdentificeerde 

genen werden geassocieerd met neuronale transmissie en risico’s voor grote psychiatrische 

stoornissen, evenals epilepsie en alcoholvergiftiging (Hoofdstuk 5).

Conclusie 

Onze resultaten bieden een perspectief op het dynamische karakter van geheugen voor zowel 

de temporele als de sterkte kant. Wat betreft de temporele kant lieten onze experts zien dat de 

hersenen tijdens een continue ervaring gebruik maken van afzonderlijke neurale toestanden om 

informatie te segmenteren in gebeurtenissen en deze tegelijkertijd te binden tot een samenhangend 

verhaal door middel van contextcodering. Om snel te schakelen tussen het ophalen van het 

geheugen en de controle van geheugen moeten de hersenen hun neurale toestanden her 

configureren in de tijd. Indien dit niet gebeurd kan de resterende status van het ophalen van 

het geheugen storingen in geheugencontrole veroorzaken.  Wat betreft de sterkte van geheugen 

lijkt het actief ophalen van geheugen na initiële consolidatie episode-unieke mnemonische 

representaties te promoten, wat leidt tot een toename in geheugen sterkte. Daarentegen 

schakelt de geheugencontrole de prefrontale betrokkenheid bij het ophalen van geheugens uit, 

waardoor de geheugensterkte aangetast wordt. Deze veranderingen in geheugensterkte zijn 

geassocieerd met veranderingen in de emotionele intensiteit van de individuele geheugensporen. 

Dit dubbele modulatieverschijnsel wordt ondersteund door het gemeenschappelijke remmende 

controle netwerk en corresponderende transcriptionele correlaten.  Toekomstig onderzoek 

naar geheugendynamiek zou kunnen leiden tot niet-farmacologische, cognitieve benaderingen 

die de coderingsefficiëntie en persistentie van alledaagse herinneringen kunnen verbeteren of 

traumatische herinneringen en hun emotionele impact kunnen wijzigen. Dergelijke methoden 

zouden zowel fundamentele als toegepaste kennis kunnen opleveren voor geheugen gerelateerde 

symptomen bij geheugenstoornissen en affectieve stoornissen.
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Wei Liu was born on 11th of May in 1991 in Changsha, Human 
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Donders Graduate School for Cognitive Neuroscience

For a successful research Institute, it is vital to train the next generation of young scientists. 

To achieve this goal, the Donders Institute for Brain, Cognition and Behaviour established the 

Donders Graduate School for Cognitive Neuroscience (DGCN), which was officially recognised 

as a national graduate school in 2009. The Graduate School covers training at both Master’s 

and PhD level and provides an excellent educational context fully aligned with the research 

programme of the Donders Institute. 

The school successfully attracts highly talented national and international students in biology, 

physics, psycholinguistics, psychology, behavioral science, medicine and related disciplines. 

Selective admission and assessment centers guarantee the enrolment of the best and most 

motivated students.

The DGCN tracks the career of PhD graduates carefully. More than 50% of PhD alumni show 

a continuation in academia with postdoc positions at top institutes worldwide, e.g. Stanford 

University, University of Oxford, University of Cambridge, UCL London, MPI Leipzig, Hanyang 

University in South Korea, NTNU Norway, University of Illinois, North Western University, 

Northeastern University in Boston, ETH Zürich, University of Vienna etc.. Positions outside 

academia spread among the following sectors: specialists in a medical environment, mainly 

in genetics, geriatrics, psychiatry and neurology. Specialists in a psychological environment, 

e.g. as specialist in neuropsychology, psychological diagnostics or therapy. Positions in higher 

education as coordinators or lecturers. A smaller percentage enters business as research 

consultants, analysts or head of research and development. Fewer graduates stay in a research 

environment as lab coordinators, technical support or policy advisors. Upcoming possibilities 

are positions in the IT sector and management position in pharmaceutical industry. In general, 

the PhDs graduates almost invariably continue with high-quality positions that play an important 

role in our knowledge economy.

For more information on the DGCN as well as past and upcoming defenses please visit:

http://www.ru.nl/donders/graduate-school/phd/
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